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Abstract. The increasing number of microunmanned aerial vehicles (MUAVs) is a rising risk for personal pri-
vacy and security of sensitive areas. Owing to the highly agile maneuverability and small cross section of the
MUAV, effective countermeasures (CMs) are hard to deploy, especially when a certain temporal delay occurs
between the localization and the CM effect. Here, a reliable prediction of the MUAV flight behavior can increase
the effectiveness of CMs. We propose a pose estimation approach to derive the three-dimensional (3-D) flight
path from a stream of two-dimensional intensity images. The pose estimation in a single image results in an
estimation of the current position and orientation of the quadcopter in 3-D space. Combined with flight behavior
model, this information is used to reconstruct the flight path and to predict the flight behavior of the MUAV. In our
laboratory experiments, we obtained a standard deviation between 1 and 24 cm in a five-frame prediction of
the 3-D position, depending in the actual flight behavior. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.OE.58.5.053101]
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1 Introduction
In the recent past, the number of incidents with intentional
and unintentional misuse of small or microunmanned aerial
vehicles (MUAVs) has increased due to the increasing num-
ber of commercially available small quadcopters. In their
annual reports,1 the Federal Aviation Administration has
pointed out an increasing number of sightings and close
encounters of MUAVs reported in civilian air traffic.
Further, the first serious incidents where a MUAV crashed
into an air plane have occured.2 Beside this threat to civilian
air traffic, misuse of MUAVs can also harm personal and
public privacy and create security issues.

MUAVs can operate in highly agile flight patterns and are
hard to detect due to having small cross sections.3–7 Thus, in
the past decade, several groups have been working on the
problem of efficiently detecting, tracking, and classifying
MUAVs in different scenarios. Detection and tracking of
MUAVs have been studied using single millimeter-wave
RADAR,8 optical (VIS/SWIR)9 sensors or within a multisen-
sor approach using passive/active imaging, acoustics, and
RADAR in various field trials.10–13 Further, classification of
MUAV has been investigated using image-based deep-learn-
ing and high-level data-fusion approaches.14–16 Classification
can also be used to distinguish MUAVs from, e.g., birds.

Different sensors (such as RADAR, acoustics, and optics)
will be embedded in a counter-MUAV system where sensor
information will be processed to reliably detect/track, clas-
sify, and localize MUAV. Based on this information, deci-
sions are made and countermeasures (CMs) are engaged.
Owing to the internal processing time of information gener-
ation and decision-making as well as external time constrains
(e.g., propagation of a projectile), the effect on the MUAV

will occur after a certain inherent time delay Δt. Owing to
the agile operation and small cross section, the probability of
successful CMs is relatively low.17 Here, the prediction of
the MUAV position at the moment of effect could signifi-
cantly increase the success rate.

First, works that predict the MUAV position in the image
plane of the succeeding frame (frame-to-frame prediction) of
a video stream18,19 using a linear motion model have been
presented. In our approach, we predict the position of the
MUAV in three-dimensional (3-D) space and on a longer
time scale tP (with tP ≈ Δt) or over n-frames. For a reliable
result, we determine the 3-D position of the MUAV from
pose estimation in a two-dimensional (2-D) intensity images
and apply a navigation model to simulate the flight behavior.

2 Prediction of Microunmanned Aerial Vehicle
Position in the Image Plane

Based on linear quadratic estimation, Kálmán20 developed a
filter to either reduce measurement noise effects and to esti-
mate values (or determine the most probable value). In the
computer vision community, for instance, the Kalman filter
approach is widely used for tracking and navigating the
MUAV.18,19 The Kalman filter fð·Þ is used to predict the
MUAV state vector Xi, which contains a set of parameters,
from a current measurement yi and the previous state vector
Xi−1, as defined in Eq. (1). Here, ω describes noise character-
istics

EQ-TARGET;temp:intralink-;e001;326;164Xi ¼ fðXi−1; yi;ωÞ: (1)

Depending on the application (e.g., navigation or
tracking), the state vector summarizes several physical
parameters [such as position, velocity, angles (roll, yaw,
pitch), and angular velocities] to describe the current flight
state. In our approach, the state vector is defined as
Xi ¼ ½xi; ẋi; ẍi�T containing only the MUAV position xi,
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velocity _xi, and acceleration ẍi that are the first and second
temporal derivatives of the position in the i’th frame. Higher
order of temporal derivatives [the jerk (third) and the snap
(fourth)] could be of interest in future algorithms and are
neglected in the current code.

We developed a tracking and prediction filter based on
Murphy’s “Kalman filter toolbox for Matlab”21 and the tuto-
rial of Welsh and Bishop.22 Our filter was designed to predict
a MUAV position in a n-frame future from a continuous data
stream and has two stages: a Kalman filter to estimate the
current state vector Xi and an n-frame prediction filter to
estimate the future state X̂iþn.

The Kalman filter, as described in Sec. 5, returns a state
vector Xi at time ti, containing position, velocity, and accel-
eration. Then, the MUAV state vector X̂iþn at time tiþn can
be predicted using the motion equation approach, as defined
in Eq. (2). The predicted position x̂iþn can be extracted by
Eq. (3). We define the motion prediction equations as

EQ-TARGET;temp:intralink-;e002;63;551X̂iþn ¼
2
4 1 n 1

2
n2

0 1 n
0 0 1

3
5Xi (2)

and

EQ-TARGET;temp:intralink-;e003;63;493x̂iþn ¼ ½ 1 0 0 �Xiþn: (3)

The complete n-frame prediction procedure is illustrated
in Algorithm 1 as a pseudocode. The computation process
returns a predicted position ẑiþn and needs a set of input
data consisting of the current image frame Fi, the previous
MUAV state vector Xi−1, and the number of frames n as the
prediction range. First, the MUAV position xi in the current
image has to be determined by, for instance, a tracking

algorithm. This step will be discussed in the next paragraph.
From these position measurements, the current state vector is
calculated using the Kalman filter and the MUAV state X̂iþn
at frame iþ n is predicted. Finally, the estimated future
position x̂iþn is extracted [see Eqs. (2) and (3)].

In Fig. 1, some frames of a video stream are presented.
This video was recorded inside our laboratory, showing
a small quadcopter MUAV (type DJI Phantom 3) flying
around in the camera field of view. The MUAV is tracked
with a state-of-the-art tracker based on the consensus-
based matching and tracking of key points (CMT).23,24

In this algorithm, the image is transformed to an alternative
base using feature detection from accelerated segment test
(FAST)25,26 and binary robust invariant scalable key points
of features27 as feature detector and descriptor subroutines.

The tracker employs clustering of correspondences as the
central idea to distinguish inlier and outlier key points. This
approach improves the tracking results, even when corre-
spondences are located on deformed parts of the object.
As the flying MUAV shows very rapid aspect changes
due to the angle between the vision system and the target,
this tracker is well adapted to this particular situation. The
tracking algorithm returns a vector containing the MUAV
position (xi and yi are the column and row positions of
the MUAV, respectively) and the size of the bounding box
(width and height: wi, hi). In Fig. 1, some frames of the
video stream illustrate the CMT tracking results.

An exemplary result of our tracking and prediction algo-
rithm (Algorithm 1) is presented in Fig. 2. In Fig. 2(a), a five-
frame prediction result from our approach using first and
second derivatives (□) is compared to a simple prediction
approach using the first derivative only (Δ). Both prediction
paths are compared to the ground-truth CMT tracking data
(—). As long as the MUAV flight operation is slow and
smooth, only small differences between ground truth and
predicted paths are observed. But at turning points and dur-
ing high-agile flight operation, the predictions are less accu-
rate, especially for the simple prediction approach.

A deeper discussion of the prediction results is presented
in Fig. 2(b). In the top diagram, the amount of single flight
behavior components are plotted for each frame as the ampli-
tude of the first and second derivatives [nj_xj (⋯) and 1

2
n2jẍj

(—)]. It is obvious that rapid changes in the first derivative
lead to peaks in the amplitude of the second derivative.

Furthermore, in the bottom diagram of Fig. 2(b), the pre-
diction error is illustrated as the mismatch distance between
ground truth and predicted position given by the L2-norm
distance: dL2 ¼ kxi − x̂ik2. For the simple prediction
approach (⋯), high errors can be observed in frames that
are related to high agile or dynamic MUAV flight operations
(see frames 110 to 125, 165 to 195, 205 to 220, etc.). In this

Algorithm 1 Pseudocode for the n-frame prediction of 2-D MUAV
position in the image plane.

Input: Current frame F i , previous state vector X i−1, coefficient n

Output: n-frame prediction of 2-D MUAV position ż iþn

1: Determine the MUAV position in frame: F i → x i

2: Apply the Kalman filter f ðX Þ

3: Predict the state vector in the i þ n’th frame: X iþn . [Eq. (2)]

4: Extract the position in the i þ n’th frame: x̂ iþn . [Eq. (3)]

5: return x̂ iþn

Fig. 1 CMT of the key points in a MUAV video sequence.
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specific sequence, we obtain a mean prediction error of
10.1 pixels. This mismatch distance can be reduced signifi-
cantly by additionally employing the second derivative (—)
in our prediction approach. With this algorithm it is possible
to reduce all previously occurring peaks significantly and a
mean prediction mismatch distance of 4.7 pixels is reached.

3 Prediction of Microunmanned Aerial Vehicles
Position in Three-Dimensional Space

In three-dimensional (3-D) space, the flight path prediction
has to take into account the position and motion in all spatial
dimensions to reflect the complex MUAV flight behavior.
Here, we want to introduce a pose estimation algorithm to
derive the 3-D position and orientation of the MUAV
from the 2-D intensity images. Further, we use the obtained
data in an aerodynamic flight behavior model to calculate the
acceleration as an additional measurement value. Then, both
the determined 3-D position and the acceleration values are
fed into the aforementioned Kalman filter and prediction
algorithm to return the probable future MUAV position in
the 3-D space.

Flight behavior of a quadcopter MUAV, for instance,
is modeled in the algorithm used for navigation and
control.28–33 These algorithms analyze the dynamic behavior
of the spatial and the angular motion to control the power
consumption of the four rotors individually. Typically, these
models combine a global or inertial and a MUAV or body
coordinate system. In our approach, we rely on the global
coordinate system of the optical sensing device. In the coor-
dinate system the x- and y-directions are the width and the
height corresponding to the previous pixel row and column
directions, respectively. Then, the z-direction is the range.

Further, we developed a simplified flight behavior model
to describe the MUAV motion from the thrust T, the gravi-
tational force G, and the aerodynamic drag force D, which
can be derived from some fundamental parameters such as
position and orientation in 3-D space, velocity, acceleration,
and few boundary conditions (aerodynamic constants and
parameters). In principle, we assume that the MUAV is a
floating object (the vertical component of the thrust compen-
sates for earth gravitation). Details of this fight behavior
model can be found in Secs. 6 and 7.

Position and orientation of the MUAV in 3-D space can be
derived from pose estimation. For this task, the quadcopter
used in our experiment can be modeled by a skeleton model
consisting of four small vertical segments equally distributed
around a bigger vertical segment, as shown in Fig. 3. The
four small segments represent the rotation axes of each
propeller and the bigger one represents the body of the
quadcopter.

The use of a skeleton model has the benefit of not being
too specific to the investigated MUAV. Later adaption to
another MUAV can easily be done by changing the model.
The only values that have to be known are the number of
propellers and their distance to the center.

For the investigated vehicle, the DJI Phantom 3,34 there
are four propellers located 175 mm from the center. The
number of points per segment can also vary, but it does
not have a great influence; we usually use 20 points per seg-
ment. The skeleton points are designated by S ¼ fsjg when
placed at the origin. The pose of the skeleton corresponding
to the image i is represented by a vector containing six values
ϕi ¼ ½θx θy θz x y z�, where x is the x-coordinate and θx is the
angle of rotation around this axis. Analogous definitions are
made for the y-axis and the z-axis. Here, SiðϕiÞ ¼ fsi;jg is
the transformed skeleton (rotation and translation) and stands
for the points at pose ϕi

EQ-TARGET;temp:intralink-;e004;326;108SiðϕiÞ ¼ RiSþ ti; (4)

EQ-TARGET;temp:intralink-;e005;326;66Ri ¼ RzðθzÞRyðθyÞRxðθxÞ; (5)

Fig. 2 Prediction of MUAV flight behavior in the 2-D image plane using the CMT tracker and the first and
second derivatives ( _x and ẍ ): (a) ground-truth CMT track (—) and five-frame track prediction using _x -only
(Δ) and _x–ẍ (□) algorithms, (b) the amount of the nj _x j (⋯) and n2jẍ j (—) components and the prediction
errors that are the L2-norm distances from the original track.

Fig. 3 Representation of a drone as (a) a computer graphics model
and (b) a skeleton, as used in the pose estimation of the quadcopter.
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EQ-TARGET;temp:intralink-;e006;63;480ti ¼ ½x y z�T; (6)

where RxðθxÞ is the rotation of angle θx around the x axis.
The pose estimation is based on the use of two successive

views. The pseudocode is given in Algorithm 2. First, cor-
ners are detected in the region bi of the current frame Fi
using the FAST corner detector26 with a nonmaximum
suppression to obtain a better distribution of the corners
Ci ¼ fci;jg over the MUAV, as illustrated in Fig. 4(a).
The detected corners are described using the BRIEF35

algorithm and matched with the corners from the previous
frame, Ci−1, to obtain the matches Mi;i−1. At this point, the
set of matches Mi;i−1 contains corners located on the drone
but also mismatches, corners on the background and corners
on the propellers. In the next step, the unwanted corners
(mismatch, background, and propellers) are filtered out by
estimating the essential matrix36 [see Fig. 4(b)]. Hereafter
Mi;i−1, Ci−1, and Ci correspond to the filtered data set.

To estimate the pose of the drone, we need to associate the
detected corners with points on the skeleton. A pinhole cam-
era model is used to project the skeleton in the image plane.
The camera is placed in the origin of the coordinate system
with the standard axes, i.e., the depth of the scene is along the
positive z-axis and the y-axis points to the ground. Using
homogeneous coordinates, the camera projects the skeleton
Si to Si;proj according to

EQ-TARGET;temp:intralink-;e007;326;752Si;proj ¼ PSi; (7)

where P is the 4 × 4 homogeneous projection matrix.37

Further, in Fig. 4(c), we couple the detected corners and
the projected skeleton points that are close together,
dðci−1; si−1;projÞ ≤ ϵ, ci−1 ∈ Ci−1 and si−1;proj ∈ Si−1;proj. If
a skeleton point satisfies the condition with several corners,
we keep the closest couple. From this we obtain subsets
of Ci−1 and Si−1;proj called Ci−1;opti and Si−1;opti. It is
then straightforward to obtain Ci;opti, Si;opti, and couples
ðci;opti; soptiÞ with ci;opti ∈ Ci;opti and sopti ∈ Si;opti.

For each corner in Ci;opti, a ray r passing through the cam-
era center (the origin) and the corner is computed. The pose
of the drone in image i, ϕi, is then updated by minimizing the
distance between each element of Si;opti and their corre-
sponding rays (see Fig. 5). The minimization is performed
using ϕi−1 as a starting point

EQ-TARGET;temp:intralink-;e008;326;559ϕi ¼ argϕi
min

X
j

dðrj; sjÞ2; sj ∈ Si;opti; (8)

EQ-TARGET;temp:intralink-;e009;326;504rj ¼ P−1ci;opti;j ¼ P−1½xc yc 1 1�T; (9)

where dðrj; sjÞ is the orthogonal distance from the point sj to
the line rj. Here, xc and yc are the corner coordinates in
pixel. The minimization is performed by the Trust Region
Reflective38 algorithm, which is implemented in SciPy.39

Bounds are used on the angular components of the pose
to obtain meaningful results according to the MUAV spec-
ifications (see Table 2 in Sec. 6). The whole pose estimation
algorithm is summarized as a pseudocode in Algorithm 2.

The resulting pose vector ϕi of the current frame and the
state vector Xi−1 of the previous frame are used to estimate
the current state vector Xi using the MUAV flight behavior
model in Sec. 6 and the Kalman filter in Sec. 5. Orientation
(θx, θy, and θz) and velocity _x are needed to estimate
the current acceleration ẍi from the flight model [Eq. (15)],
taking into account the gravitation, thrust, and aerodynamic
drag force. The determined acceleration vector and the ϕi
positions are then fed into the Kalman filter as measurement
values (zi) to update the MUAV state vector Xi. Finally, the
n-frame prediction is calculated as mentioned previously.

Figure 6 shows the results from the analysis of the same
image sequence as used in Sec. 2. Owing to the missing reli-
able data for ground truth for the MUAV position, a reference
for the 3-D flight path (—) is calculated from the state vec-
tors (Xi). In Fig. 6(a), this track is compared to the five-frame
prediction (gray bullets). A good agreement between flight
path and prediction can be observed in area of constant or

Algorithm 2 Pseudocode for the pose estimation of the MUAV from
two successive views.

Input: Current frame F i , previous pose ϕi−1 ∈ R6, previous detected
corners Ci−1, bi from the CMT, threshold ε, skeleton S

Output: ϕi , Ci

1: Detect corners Ci within bi using the FAST algorithm

2: Match Ci with Ci−1 using BRIEF descriptors and Hamming
distance → Mi;i−1

3: Filter out propellers and background motion from Mi;i−1 by
estimating the essential matrix

4: Use ϕi−1 to project S into F i → Si−1;proj

5: Associate Ci−1 with Si−1;proj, ðci−1;j ; si−1;proj;j Þ ∈ Ci−1 × Si−1;proj
such that dðci−1; si−1;projÞ ≤ ϵ → Ci−1;opti; Ci;opti

6: AlignS on rays issued fromCi;opti using ϕi−1 as initial conditions
→ ϕi

7: return ϕi , Ci

Fig. 4 Link between the detected corners on the image and the drone skeleton model. (a) The detected
corners using FAST, (b) the corners after the estimation of the essential matrix and the projected skeleton
from the previous frame, and (c) skeleton points and corners used for the pose estimation of the drone.
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linear movement (no rapid change of flight direction), while
at turning points, where the flight direction changes rapidly,
the algorithm still tends to overestimate the flight motion.

In Fig. 6(b), a detailed analysis is presented. In the upper
diagram, the amplitudes of the motion components, i.e.,
absolute velocity and absolute acceleration, are depicted.
These values are directly derived from the algorithm. The
velocity and acceleration are measured in standard units
(m/s and m∕s2).

In the lower diagram, the prediction error, that is L2-norm
distance between predicted and ground-truth positions, is
plotted for each frame. In most frames, this prediction error
is < 20 cm. Only in a few sections of the sequence does this
error exceed a value of 50 cm. These are the parts of the track
where rapid changes of the flight direction occur. Further,
significant prediction errors occur in the same frames as
in the 2-D case [compare Fig. 2(b)], only.

A more detailed discussion of the prediction error can be
derived from Fig. 7. Here, the prediction error is plotted for
each coordinate axis as the difference between the MUAV

flight path (or track) and the predicted positions. Along
the three coordinate axes, the prediction error is scattered
around the zero position, giving evidence that no systematic
error is present. In height (Δy) and width (Δx), the error is
scattered with marginal standard deviation σ of �1 and
�3 cm, respectively. Owing to a more dynamic flight behav-
ior, the standard variation along the range axis (Δz) is
σ ¼ 24.4 cm. Here, we want to point out that the retrieval
of 3-D information from a single view in a 2-D intensity
image is a challenging task, especially for range estimation.
The statistical analysis of the whole sequence of 319 frames
is summarized in Table 1.

Fig. 6 Results of the 3-D MUAV tracking and n-frame prediction algorithm applied to a video sequence
recorded under laboratory conditions: (a) 3-D tracks from the Kalman filter (—) and the n-frame prediction
(gray bullets); (b) amplitude of the components (first and second derivatives) and the prediction mismatch
(L2-norm).

Fig. 5 Principle for aligning the drone skeleton on the rays issued
from the detected corners. Aligning the skeleton S starting at the
pose ϕi−1 on rays issued from Ci;opti shown in Fig. 4.

Fig. 7 Illustration of the prediction error as a 3-D scatter plot. The dif-
ference between track and prediction is plotted for each coordinate
axis: height, width, and range.

Table 1 Summary of statistics on the prediction error in a sequence
of 319 frames.

Data
Mean
(m)

Std.
deviation
σ (m)

Variance
σ2 (m2)

Min.
(m)

Max.
(m)

Δx −0.002 0.03 0.001 −0.13 0.13

Δy 0.0002 0.0109 0.0001 −0.03 0.03

Δz −0.002 0.244 0.06 −0.59 0.88
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4 Conclusions
We want to point out again that the 3-D information was
carried out from pose estimation in 2-D intensity images.
Further, in the analyzed sequences, the MUAV was observed
under a very gradual observation angle. Here, a more slanted
observation angle could help to increase the accuracy of the
spatial position estimation.

We successfully demonstrated the capability to extract
3-D information from 2-D intensity images by applying
pose estimation with a simple skeleton model. From this
pose information (i.e., position and orientation) and a sim-
plified flight behavior model (with a floating body approxi-
mation), we could calculate the state vector that describes
the current MUAV flight operation. Further, using a motion
model that includes velocity and acceleration, we could pre-
dict the position of the MUAV in the near future.

The overall performance gives evidence that our approach
is capable of resulting in a good first estimation of the future
MUAV flight behavior. Unfortunately, in dynamic operation
that includes rapid changes in velocity and direction, the
underlying model tends to an overshooting effect. In future
investigation, this error could be diminished by the use of
a higher order of temporal derivative.

In our experiments, we used a single view from a single
camera to retrieve a 3-D pose estimation by mainly analyzing
the position of the four rotors. Further, the experiments were
carried out at a very narrow viewing angle close to the
MUAV principal plane. In these conditions, sometimes the
line of sight on one or two rotors is blocked by the MUAV
main body. Then, the pose estimation uses only the remain-
ing visible rotors (three visible rotors are optimal). This sit-
uation is sufficient for a reliable pose estimation and has only
a slight impact on the overall estimation of the 3-D position.
In the later application in outdoor scenarios, we assume to
have a steeper viewing angle, which should allow for an
even better pose estimation.

To date, we have investigated our approach only in labo-
ratory conditions as a proof-of-principle study. But, image
data recorded in outdoor scenarios under operational condi-
tions will contain a lot of additional disruptive factors such as
signal-to-noise ratio, resolution, lighting conditions, and
background. Further, MUAV will fly at larger ranges. Here,
an active imaging device with a very narrow field of view
could counter these challenges and could be used to gate
out the background, increase resolution and signal-to-noise
ratio, and be independent from lighting conditions. Our team
has access to a shortwave-infrared laser gated-viewing
system as presented by Christnacher et al.10 In the near
future, we will perform tests to investigate the pose estima-
tion approach in operational conditions. Lighting conditions
and observing MUAV flight behavior at a larger range can
reduce the ranging accuracy of the proposed pose estimation
approach due to an expected smaller scaling effect of the
MUAV with the range at narrower observation angles.
This effect could be compensated for by ranging capabilities
of laser imaging devices. Notwithstanding this, the determi-
nation of the tilt angles (θx and θy) and, thus, the application
of the flight model should not be affected as long as the target
is imaged with a high resolution.

Further, in the presented work, we have tested our
approach on a single known MUAV, but we are convinced
that our approach has a general nature and it could be easily

adapted to other multicopter MUAV. Finally, the tracking and
prediction of the flight behavior of unknown MUAV is pos-
sible if a classification of the target is done previously. As
long as we have a proper skeleton model, this approach
should be able to track and predict flight behavior of any
multicopter MUAV. For the prediction of other MUAV
types, such as fixed-wing or vertical takeoff and landing,
the flight model has to be adapted carefully and in detail.

5 Appendix A: Brief Description of the Kalman
Filter

The Kalman filter is an iterative forward recursion process
that consists of two steps: the “time update” and the “meas-
urement update.”22 Within the “time update,” for the i’th
measurement, the state vector X−

i and the error covariance
P−
i are projected from previous values using the linear

stochastic differential equation

EQ-TARGET;temp:intralink-;e010;326;564X−
i ¼ AXi−1 þ Buk; (10)

EQ-TARGET;temp:intralink-;e011;326;522P−
i ¼ APi−1AT þQ: (11)

Here, Eq. (10) reflects the process model as a system of
motion equations with state-transition matrix A, the previous
state vector Xi−1, and the control-input model Buk (in our
case, Buk ¼ 0). Analogously, the projected error covariance
matrix P−

i is calculated in Eq. (11) using the error covariance
Pi and the process noise covariance matrix Q.

Then in “measurement update,” the state vector Xi is
updated by weighting the measurement zi and the projected
state vector X−

i with the Kalman gain Ki. Finally, the error
covariance Pi is updated

EQ-TARGET;temp:intralink-;e012;326;402Ki ¼ P−
i H

TðHP−
i H

T þ RÞ−1; (12)

EQ-TARGET;temp:intralink-;e013;326;359Xi ¼ X−
i þ Kiðzi −HX−

i Þ; (13)

EQ-TARGET;temp:intralink-;e014;326;338Pi ¼ P−
k − KiHP−

k : (14)

Here, the matrices H and R describe the measurement
(or observation) process and covariance.

6 Appendix B: The Microunmanned Aerial Vehicles
Flight Behavior Model

The MUAV flight behavior can be described by the motion
in Eq. (15). Here, m is the mass of the MUAV and mẍ is
the resulting force that accelerates the MUAV in any
direction. This force is the sum of the gravitational force
G ¼ ½ 0 −mg 0 �T , the total thrust T of all propellers,
and the drag force D. Owing to the lack of information
about the single motor thrusts, rotational motion is neglected
in this model

EQ-TARGET;temp:intralink-;e015;326;183mẍ ¼ Gþ T þD: (15)

The overall thrust T is assumed to be perpendicular to
the MUAV main plane, that is, the plane in which all
motors lie. Here, T is oriented in the direction of the normal
vector n ¼ ½nx; ny; nz�T. We define the thrust amplitude

as jTj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
x þ T2

y þ T2
z

q
and the thrust vector as

T ¼ jTjn ¼ ½Tx; Ty; Tz�T . The thrust amplitude has positive
values jTj ∈ ½0; Tmax�. Further, in a first approximation, we
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assume a floating body that means the vertical thrust (Ty)
compensates for the gravitational force

EQ-TARGET;temp:intralink-;e016;63;730Ty þ Gy ¼ 0 ⇒ Ty ¼ mg: (16)

From this assumption we can determine the forces
induced by the thrust in the other direction

EQ-TARGET;temp:intralink-;e017;63;678Tx ¼
nx
ny

Ty ¼
nx
ny

mg; (17)

EQ-TARGET;temp:intralink-;e018;63;624Tz ¼
nz
ny

Ty ¼
nz
ny

mg: (18)

Finally, we use a simplified model based on Stokes’s law
to determine the drag force D ¼ −kd _x with kd as an aerody-
namic constant. This force describes the aerodynamic drag
on the MUAV that is proportional to the velocity. The aero-
dynamic constant kd can be determined experimentally.40,41

In this paper, we assume an isotropic aerodynamic coeffi-
cient of kd ¼ 0.55 kg

s
and a maximum thrust of Tmax ¼

15.3 kgm

s2
, which can be calculated from Eq. (15) and the

technical specification of the investigated MUAV.34 Details
of this calculation are summarized in Sec. 7.

From Eqs. (15)–(18), we can derive a calculus to deter-
mine the accelerations in the x-, y- and z-directions from
the MUAV tilt angles (θx and θz), which is analogous to
the 3-D pose of the MUAV

EQ-TARGET;temp:intralink-;e019;63;443ẍ ¼ nx
ny

g −
kd
m

ẋ; with
nx
ny

¼ tan θx; (19)

EQ-TARGET;temp:intralink-;e020;63;389ÿ ¼ −
kd
m

_y; (20)

EQ-TARGET;temp:intralink-;e021;63;359z̈ ¼ nz
ny

g −
kd
m

ż; with
nz
ny

¼ tan θz: (21)

Further, stable flight operation has to comply with the
condition that the thrust amplitude jTj is limited by the maxi-
mum thrust Tmax by jTj < Tmax. This condition has a direct
impact on the expected values of the normal vector [see
Eq. (22)] and is analogous to the definition of a maximum
tilt angle θmax

EQ-TARGET;temp:intralink-;e022;63;270

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y þ n2z

n2y

s
<
Tmax

mg
; (22)

EQ-TARGET;temp:intralink-;e023;63;210

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2z

n2y

s
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Tmax

mg

�
2

− 1

s
≡ tan θmax: (23)

7 Appendix C: Estimation of Aerodynamic
Coefficient kd and Maximum Thrust Tmax

With the definitions of the gravitational force G, the thrust T,
and the drag force D as

EQ-TARGET;temp:intralink-;e024;63;123G ¼
2
4 0

−mg
0

3
5; T ¼

2
4 tan θxTy

Ty

tan θzTy

3
5 and D ¼

2
4−kẋ
−kẏ
−kż

3
5;
(24)

the MUAV motion can be described as motion in the x-, y-
and z-directions by the equation system in Eqs. (25)–(27) in
analogy to Eq. (15). Now, θi is the inclination of the MUAV
or tilt angle in the i-direction and tan θi is equal to

ni
ny

EQ-TARGET;temp:intralink-;e025;326;526mẍ ¼ tan θxTy − kdẋ; (25)

EQ-TARGET;temp:intralink-;e026;326;483mÿ ¼ −mgþ Ty − kdẏ; (26)

EQ-TARGET;temp:intralink-;e027;326;461mz̈ ¼ tan θzTy − kdż: (27)

In the following, the aerodynamic parameters Tmax and
kd will be derived from this equation system using manufac-
turer specifications for weight, maximum horizontal and
vertical velocity, and maximum tilt angle of the investigated
MUAV.34 The values are summarized in Table 2.

As illustrated in Fig. 8, we can distinguish two borderline
flight operations: maximum horizontal velocity and maxi-
mum vertical velocity.

7.1 Maximum Horizontal Velocity

First, we assume a flight operation with maximal horizontal
velocity in the x-direction. In this case, the MUAV will be
tilted to maximum inclination toward the flight direction,
which is given by the maximum tilt angle θ ¼ θmax. Further,
in the horizontal direction (x), the velocity _x is equal to
vh;max, the maximum horizontal velocity.

Further, due to borderline flight operation, the velocities
in the other directions and all accelerations are zero,

Table 2 Physical flight parameter Tmax and kd for the investigated
MUAV calculated from the manufacturer specifications.34

Parameter Symbol Unit DJI phantom 3

Total weight m Kg 1.28

Max ascent speed vv;max m/s 5

Max horizontal speed vh;max m/s 16

Max tilt angle θmax deg 35

Max thrust Tmax
kgm
s2

15.3

Drag const. kd
kg
s 0.55

Fig. 8 The two different extreme flight operations, case 1: maximal
horizontal velocity and case 2: maximal vertical velocity, are
distinguished.
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_y ¼ _z ¼ 0 and ẍ ¼ ÿ ¼ z̈ ¼ 0. The thrust is at maximum
level, T ¼ Tmax, but, due to the floating body assumption,
its vertical component Ty has to compensate for the gravi-
tational force, that is Ty ¼ mg. Thus, the maximal thrust
Tmax can be calculated as

EQ-TARGET;temp:intralink-;e028;63;696Tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
x þ T2

y;
q

(28)

EQ-TARGET;temp:intralink-;e029;63;645¼mg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtan θmaxÞ2 þ 1

q
; (29)

EQ-TARGET;temp:intralink-;e030;63;616Tmax ¼ 15;3
kgm

s2
: (30)

Then, the aerodynamic constant kd can be calculated from
Eq. (25) as

EQ-TARGET;temp:intralink-;e031;63;573kd ¼ mg
tan θmax

vh;max

¼ 0.55
kg

s
: (31)

Although we have already determined the values for both
Tmax and kd, these results can be validated by the second
case, that is, maximum vertical velocity.

7.2 Maximum Vertical Velocity

Here, we can assume a flight operation with maximum ver-
tical velocity ẏ ¼ vv;max. In this case, the inclination angle is
zero, θ ¼ 0 deg, and the maximum thrust pushes the MUAV
upward in the y-direction, Ty ¼ Tmax. The velocities in the
horizontal directions are zero, _x ¼ _z ¼ 0, as well as any
accelerations, ẍ ¼ ÿ ¼ z̈ ¼ 0. Then, from Eq. (26) and with
the result for either kd or Tmax of the previous case, we can
again derive

EQ-TARGET;temp:intralink-;e032;63;380kd ¼
Tmax −mg

vv;max

¼ 0.55
kg

s
; (32)

EQ-TARGET;temp:intralink-;e033;63;324Tmax ¼ mgþ kdvv;max ¼ 15.3
kgm

s2
: (33)

Both results agree with the previously found values.
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