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Abstract. The label-free analysis of leukocytes by holographic microscopy has the potential to
overcome the extensive labeling procedures of conventional analysis by automated hematology
analyzers and manual blood smear analysis. For the enrichment of leukocytes, selective lysis of
erythrocytes is applied in flow cytometry to minimize the background. In the case of quantitative
phase measurements, lysis procedures may affect the morphology of leukocytes inducing
refractive index changes, which can deteriorate the specificity and sensitivity of the method.
To study the effects of selective erythrocyte lysis on phase measurements of leukocytes, we
compared two widespread methods: lysis by hypotonic shock followed by magnetic depletion
of erythrocytes and lysis with a commercial lysis buffer containing ammonium chloride and
potassium bicarbonate. We observed that lymphocytes were less affected than granulocytes
and monocytes by both methods and that the intracellular changes increased with increasing
incubation times. These findings indicate a significant effect of erythrocyte lysis on leukocytes
and need to be studied for future hematology applications. © The Authors. Published by SPIE under
a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.59.10
.102403]
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1 Introduction

Whole blood sample preparation plays an important role in automated hematology analysis,
especially for the measurement of leukocyte concentrations, and leukocyte differential auto-
mated sample preparation allows fast and quantitative results.1–4 However, extensive sample
preparation procedures are still an issue for patient samples with interferences and can induce
undesired changes in cell morphology. Automated hematology analyzers with integrated work-
flows have optimized preanalytics to minimize background effects and to achieve high accuracy
with healthy donor samples. Flagged results often observed with patient samples require a
manual review by peripheral blood smear analysis, which still remains the gold standard in
hematology analysis.

Owing to its high contrast with measuring biological samples induced by different phase
delays of intracellular components, digital holographic microscopy (DHM) is a label-free alter-
native for hematology.5,6 In the case of leukocyte analysis, any effects on the cellular morphology
caused by sample preparation procedures are critical. Intracellular refractive index changes lead
to variances in quantitative phase measurements, which influence the sensitivity and specificity.
Previous work focusing on the label-free holographic analysis of leukocytes analyzed either cells
isolated by Ficoll density centrifugation or cells in culture.7–13 Central laboratory applications
require integrated workflows for a high-throughput analysis. The selective lysis of erythrocytes
provides a rapid method for the isolation of leukocytes from whole blood and is widely used in
commercial hematology analyzers and fluorescence flow cytometers. Recently, we demonstrated
that a selective lysis of erythrocytes by hypotonic shock is suitable for a rapid detection and
differentiation of leukemic diseases by DHM.14 Unfortunately, this working step still requires

*Address all correspondence to Matthias Ugele, E-mail: matthias.ugele@tum.de
†Both authors contributed equally to this manuscript

Optical Engineering 102403-1 October 2020 • Vol. 59(10)

https://doi.org/10.1117/1.OE.59.10.102403
https://doi.org/10.1117/1.OE.59.10.102403
https://doi.org/10.1117/1.OE.59.10.102403
https://doi.org/10.1117/1.OE.59.10.102403
https://doi.org/10.1117/1.OE.59.10.102403
https://doi.org/10.1117/1.OE.59.10.102403
mailto:matthias.ugele@tum.de
mailto:matthias.ugele@tum.de
mailto:matthias.ugele@tum.de


a depletion of remaining erythrocyte fragments to reduce background artifacts in the images,
which is a costly and time-consuming procedure. Commercial erythrocyte lysis buffers contain-
ing ammonium chloride and potassium bicarbonate provide an alternative for complete lysis of
erythrocytes without further preanalytical steps. So far, the impact of these lysis buffers has
only been studied for the change of flow cytometry parameters, such as fluorescence inten-
sities.15 The impact on cellular refractive index changes and, therefore, on the phase contrast
analyzed by DHM has not been studied.

To address this problem, we compared the effects of erythrocyte lysis on DHM imaging of
leukocytes. We applied two different lysis methods: erythrocyte lysis by a commercial lysis
buffer containing ammonium chloride and potassium bicarbonate and our previously established
method of selective lysis by hypotonic shock followed by immunomagnetic depletion. In addi-
tion, we analyzed the effects of the lysis buffer incubation times on cell morphologies and intra-
cellular phase contrast changes. It could be shown that different sample preparation methods
(SPMs) have a significant effect on leukocyte measurements with DHM. Especially granulocytes
and monocytes appear to be more sensitive to erythrocyte lysis methods, while for lymphocytes
the observed impact was smaller. Finally, even incubation times of the lysis buffer have a major
influence on leukocyte measurements by DHM.

2 Methods

2.1 Digital Holographic Microscopy

Measurements were performed with a transmission off-axis holographic microscope provided by
Ovizio Imaging Systems, Belgium, which has been described before.14,16 It is a double-differ-
ential DHM and is equipped with a 40× NA 0.55 Nikon CFI LWD 40× Cremove objective,
a 528-nm Oslon PowerStar SLED (Osram), and a PointGrey Grashopper GS3U332S4 camera
(105 fps, exposure time 5 μs) for high-throughput imaging (Fig. 4, Appendix A). By using
a low-coherent light source instead of a coherent laser, the image degradation is eliminated and
the image quality is improved.17,18 The light beam emitted from the light-emitting diode first
passes a Köhler illumination path and then passes through the sample, which is located in the
back focal plane of the microscope objective (Fig. 6, Appendix A). Either a blazed or Ronchi
diffraction grating is used to split the incident beam into a diffracted (reference beam) and a
nondiffracted beam (object beam). A lens located at focal distance of the grating allows a reshap-
ing of both beams in parallel orientation. A wedge at the optical path of the reference beams
induces a small shift of the images produced by diffracted and nondiffracted beams in order to
obtain differential interferogram, as described in detail by Dubois and Yourassowsky.19 In par-
allel to the wedge, compensation means are introduced in the optical path of the nondiffracted
light beam compensating the phase shift introduced by the wedge in the diffracted beam. In a last
step, the object and reference beam are focused on a detector, resulting in an interferogram.
A detailed description of the working principle and microscope setup is described by Dubois
and Yourassowsky.19,20 Reconstruction of the phase and amplitude images out of the holograms
were performed using the OsOne Software Version 5.1 (Ovizio Imaging Systems, Belgium).

2.2 Microfluidics

A channel with a height of 50 μm, a width of 500 μm, and a total length of 50;000 μm was used
for precise alignment of a submonolayer of blood cells. The microfluidic poly(methyl methac-
rylate) (PMMA) system (Fraunhofer ICT-IMM, Mainz) contained five inlets with a top and bot-
tom flows (z-sheaths), two side flows (x and y sheaths), and one sample flow. The samples were
diluted in 0.9% polyvinylpyrrolidone (PVP, molecular weight Mw ¼ 1.3MD, Alfa Aesar) in
phosphate-buffered saline (PBS). Sheath flow conditions were established using PBS as a sheath
flow buffer. A total flow rate of 1 μl−1 was adjusted by the neMESYS Base 120 pump system
with five modules (cetoni GmbH). Each slot was equipped with a 2.5-ml gas tight syringe
(VWR). During the measurements, all pumps were adjusted to a flow rate of 0.2 μl−1.
Microfluidic components (tubes, connections) and a six-port injection valve (V-451 six-port
medium pressure injection valves bulkhead version .040 Black) were purchased from IDEX
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Health & Science. Maximum Reynolds numbers in the single digit range (Re ≈ 4.1) have been
calculated for the measurement state. Therefore, measurements were performed in the laminar
flow regime.21

2.3 Data Processing

Data processing and analysis of leukocyte data were performed as described by Ugele et al.14 In
short, floating point phase-shift pixel values for each recorded phase image within the interval of
[0,8] were converted to grayscale values. By calculating the median gray value from the first 11
images of the resulting grayscale image, a background image was determined. By subtracting
this background image from each phase image, a correction of the background and, therefore, a
reduction of the background noise was achieved. For each corrected image, a binary picture was
generated by thresholding at the gray level of 28. This resulted in a removal of holes in binary
images. As every image contained more than one cell, all objects were segmented. For each
object, parameters based on the phase values inside the contour and based on a gray-level
co-occurrence matrix22 were calculated. Gating strategies for the differentiation of leukocytes
were developed in Kaluza flow cytometry analysis (v.2.1, Beckman Coulter).

2.4 Sample Preparation

Leukocytes were isolated from the healthy donors by two different preanalytical methods. All
human samples were collected from volunteers with informed consent.

2.4.1 Erythrocyte lysis using hypotonic shock followed by erythrocyte depletion
(sample preparation method 1)

Leukocytes were isolated from ethylenediamine tetra-acetic acid (EDTA) coagulation-inhibited
peripheral blood by selective hypotonic water lysis of erythrocytes, as described elsewhere.15

For all samples, 1-ml blood was processed. To remove remaining erythrocyte fragments,
the Miltenyi Biotec MACSxpress Erythrocyte Depletion Kit was used. After centrifugation
(400 g for 10 min) the remaining pellet was resuspended in 500-μl 0.9% PVP solution.
An average time from blood drawing to imaging of 3 to 4 h was met.

2.4.2 Erythrocyte lysis by lysis buffer (sample preparation method 2)

A conventional erythrocyte lysis buffer (J62990 RBC lysis buffer for human, Alfa Aesar,
Haverhill, Massachusetts) was used for the lysis of human erythrocytes. This ammonium chlo-
ride- and potassium bicarbonate-based buffers are used for the isolation of deoxyribonucleic acid
and ribonucleic acid, as well as for several flow cytometer assays.23,24 About 1 ml of EDTA
coagulation-inhibited peripheral blood was mixed with 4 ml of the lysis buffer at room temper-
ature and incubated for 5, 10, 15, 20, and 25 min with continuous mixing on a roller mixer.
After centrifugation at 1000 g for 10 min to diminish the amount of debris, the remaining
pellet was resuspended in 500-μl 0.9% PVP solution.

2.4.3 Flow cytometry measurements of leukocytes

Leukocytes were isolated using SMP 2. Cells were fluorescently labeled with anti-CD45-
VioBlue and anti-CD14-FITC to enable subtyping of leukocytes. Staining with anti-CD45
allowed a differentiation between leukocytes and debris, whereas anti-CD14 allowed a discrimi-
nation of monocytes and lymphocytes. All other leukocyte subtypes were removed by gating in
the forward and side scatter plots. To exclude a possible activation of cells by SPM 2, leukocytes
were isolated, as described in Sec. 2.4.2, and fluorescently labeled with anti-CD45-VioBlue
and anti-CD71-FITC or with anti-CD45-VioBlue, anti-CD54-FITC, and anti-CD64-PE (Fig. 5,
Appendix A).25–27 Flow cytometry measurements were performed using an MACSQuant
Analyzer 10 (Miltenyi Biotec GmbH). For each incubation time, three measurements were
performed.
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3 Results and Discussion

3.1 Comparison of Sample Preparations Methods

To determine the effects of sample preparation on leukocytes, the two parameters, namely, “opti-
cal phase delay maximum” (OPDM, maximal phase delay value of the segmented object) and
“equivalent diameter” (ED, mean diameter of cell contour area), were investigated (Fig. 1),
because changes in these parameters represent changes in the outer and/or inner shape of the
cells. OPDM and ED of leukocyte raw data were plotted against the different SPMs, SPM 1
[Fig. 1(a)] and for each application time of SPM 2 [Figs. 1(b)–1(e)]. Initially, four main
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Fig. 1 Influence of lysis buffer incubation time on the amount of cell debris and lymphocytes:
(a) label-free density plots of leukocytes purified by hypotonic shock followed by magnetic
depletion of erythrocytes. (b)–(e) Label-free density plots of leukocytes purified by erythrocyte lysis
with the commercial lysis buffer with incubation times of (b) 5 min, (c) 10 min, (d) 15 min, and
(e) 20 min. The plots (a)–(e) are divided into four sections indicating cell debris (Db), lymphocytes
(L), granulocytes and monocytes (G), and duplets (D). The use of hypotonic shock followed by
magnetic depletion of erythrocytes resulted in the lowest amount of cell debris, with greater 5-min
incubation time of the lysis buffer significantly reducing the amount of cell debris. Parameters ED
and OPDM are plotted. Each density plot shows representative single-cell data from one sample.
Percentages of cells are indicated for each gate. (f) The changes in the parameters ED and OPDM
of lymphocytes [gate L in (a)–(e)] for the different SPMs, respectively, incubation times are plotted.
Overall, only slight changes were observed, indicating that lymphocytes are not affected by differ-
ent treatment. Data points show the pooled data from two samples. Error bars represent the first
standard deviation of the grouped population.
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populations, consisting of cell debris, lymphocytes, granulocytes and monocytes, and aggregates
were separated by gating [Figs. 1(a)–1(e)]. First, the amount of cell debris between SPM 1 and
SPM 2 was compared. By the use of SPM 1, about 32% of cell debris occurred, which is sig-
nificantly lower than SPM 2. This can be explained by the use of the erythrocyte depletion kit,
which removed a high amount of the remaining erythrocyte fragments. However, the magnetic
depletion is costly and time-consuming (5 min incubation time, 10 min magnetic separation,
10 min centrifugation) and, therefore, SPM 1 does not provide a suitable solution for a low-
cost application at the point of care. In contrast, a high amount of 81% of cell debris for 5-min
application time of SPM 2 was observed. With increased incubation time, a reduction to 51%
(10 min), 61% (15 min), and 53% (20 min) was detected. This observation was confirmed by the
reduction of cell debris from 85% (5 min) to 40% (10 min), 71% (15 min), and 35% (20 min) in
a second measured sample. A higher amount of cell debris at 15 min than at 10 and 20 min
occurred in both samples, which was quite unexpected. Nevertheless, the overall observation
that an incubation time longer than 5 min is necessary to effectively reduce cell debris was con-
firmed. Furthermore, the total number of measured leukocytes was significantly higher for SPM
2. With SPM 2, nearly 3.8 as much cells as with SPM 1 were acquired (1870 cells on average for
SPM 1 and 7126 cell on average for SPM 2). It seems likely that the magnetic depletion of
erythrocytes leads to cell loss, due to sedimentation effects and physical interactions of leuko-
cytes with erythrocyte–magnetic bead complexes induced by the high amount of added magnetic
beads (600 μl for 1 ml blood) to ensure efficient depletion. Consequently, if samples with low
leukocyte numbers are analyzed, SPM 2 should be favored.

To determine the qualitative impact of sample preparation on leukocytes, the populations of
lymphocytes (gate L) and granulocytes and monocytes (gate G) were evaluated. For each,
OPDM and ED of the grouped populations of two samples from different donors were plotted
against the applied method [Figs. 1(f) and 2(f)]. For lymphocytes, no significant change in
OPDM and ED was observed, while the granulocyte and monocyte population showed a clear
tendency of decreasing OPDM and increasing ED with increased SPM 2 application time com-
pared to SPM 1. To better analyze the changes in inner and outer cell shapes, the granulocyte and
monocyte population was divided into four sections [a1 to a4, Figs. 2(a)–2(e)]. Initially, a shift in
the percentage of each section toward lower OPDM was observed, when comparing SPM 1 and
SPM 2. Most important, the percentage of cells in gate a1 was significantly reduced from about
16% in SPM 1 to below 2% in SPM 2. With increased incubation time of SPM 2, the percentage
of cells in a1 decreased from 1.7% (5 min) to about 0.1% (15 and 20 min). The amount of cells in
gate a2 decreased from 50.8% to 23.0%, and the percentage of cells in gates a3 and a4 increased
from 45.6% to 65.1% and 1.8% to 11.8%, respectively. These changes in the gates a1 to a4
confirmed the previously observed changes to lower OPDM with increased incubation time
of SPM 2.

As discussed above, more than 5 min incubation time of SPM 2 should be applied to avoid
high amounts of cell debris. However, increasing incubation time seems to affect the leukocytes
more strongly. An uptake of lysis buffer inside the cells and an efflux of intracellular components
could possibly be the reason for the increase in ED and the decrease in OPDM in granulocytes
and monocytes over time. An explanation why lymphocytes were less affected could be the
higher ratio of nucleus to plasma in the cells, which limits an uptake of lysis buffer. On the
contrary, with a smaller ratio of nucleus to plasma, granulocytes and monocytes were more
affected, as a higher uptake of lysis buffer might lead to swelling of cells and, therefore,
to increased ED and decreased OPDM. To confirm these findings, more samples should be
measured, including the analysis of other parameters describing the inner consistency, such as
contrast, refractive index, or dry mass. Furthermore, the impact of the sample preparation
on leukocyte differentiation should be analyzed to guarantee a reliable classification of
leukocytes, as described before.14 These experiments will be addressed by planned future
studies.

3.2 Impact of Lysis Buffer Incubation Time on Leukocyte Subpopulations

Finally, the impact of SPM 2 on leukocyte subpopulations was investigated by multicolor fluo-
rescence flow cytometry. It was of special interest, if an increased incubation time of the lysis
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buffer would induce cell loss. This could be directly observed by a change in the relative
amount of lymphocytes, granulocytes, and monocytes. Therefore, leukocytes were isolated and
labeled as described in Sec. 2. Three blood samples of one healthy donor were independently
labeled and each measured one time. As a reference, the leukocyte differential of the Sysmex
XN-350 hematology analyzer was used. Granulocytes between 55.1% and 57.9%, lymphocytes
between 39.1% and 41.2% and monocytes between 2.9% and 3.8% were determined by flow
cytometry (Fig. 3), which are in good agreement with the results from the Sysmex XN-350
(56.2% granulocytes, 38.2% lymphocytes, and 5.6% monocytes). The observed differences
of up to 4% between flow cytometry and Sysmex XN-350 measurements are most likely
due to the different methods used for leukocyte isolation (SPM 2 for flow cytometry, fully
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Fig. 2 Influence of lysis buffer incubation time on granulocytes and monocytes: (a) label-free
density plots of granulocytes and monocytes purified by hypotonic shock followed by magnetic
depletion of erythrocytes. Only cells from gate G in Fig. 1 are shown. (b)–(e) Label-free density
plots of granulocytes and monocytes purified by lysis of erythrocytes by the use of lysis buffer
with incubation times of (b) 5 min, (c) 10 min, (d) 15 min, and (e) 20 min. Only cells from gate G in
Fig. 1 are shown. The plots (a)–(e) are divided into four sections a1, a2, a3, and a4. In com-
parison to (a) a shift to lower percentage of cells in gate a1 was observed in (b)–(e). With
increased incubation time, a shift to a higher amount of cells in gates a3 and a4 and a shift
to a lower amount of cells in gate a2 were observed. Parameters ED and OPDM are plotted.
Each density plot shows representative single-cell data from one sample. Percentages of cells
are indicated for each gate. (f) The changes in the parameters ED and OPDM of granulocytes
and monocytes (gate G in Fig. 1) for the different SPMs, respectively, incubation times are
plotted.
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automated lysis and staining of cells by the Sysmex XN-350). Incubation times up to
25 min of SPM 2 did not significantly influence the relative percentage of the different
subpopulations, which show the reliability and applicability of the applied leukocyte prepara-
tion method also for DHM. Nevertheless, cell loss might occur in SPM 2, but the obtained
results strongly indicate that the loss of cells occurs equally distributed across all leukocyte
subpopulations.

4 Conclusion

Taken together, a significant impact of different SPMs on quantitative phase measurements of
leukocytes was shown. Changes in the inner and outer shapes of leukocytes were induced by
SPM 2, which might possibly also affect a label-free leukocyte differential by DHM. For this
reason, further studies have to be performed to intensively analyze possible effects and verify
that SPM 2 can also be used for leukocyte analysis instead of SPM 1. To minimize changes in
OPDM and ED the incubation time of SPM 2 should be as short as possible. However, an
acceptable amount of cell debris for imaging has to be achieved and, therefore, we suggest
a 10-min incubation time of the lysis buffer as optimal trade-off of reduced cell debris and
impact on leukocytes. In addition, the overall yield of leukocytes was 3.8 times higher by
the use of the lysis buffer, which allows also an applicability for clinical samples with
extremely low leukocyte numbers. In conclusion, selective lysis of erythrocytes by the use
of lysis buffers containing ammonium chloride and potassium bicarbonate provides a suitable
alternative to selective lysis by hypotonic shock, as long as effects on leukocytes are carefully
considered.

5 Appendix A: Supplements

Figure 4 depicts an overview of the holographic setup and microfluidic principle. Figure 5 shows
activation measurements of leukocytes before and after DHM measurements. Overview of
the used DHM principle (Fig. 6). Exemplary phase maps of leukocytes isolated with SPM 1
and SPM 2 (Fig. 7). Segmentation of phase images (Fig. 8).
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Fig. 3 Impact of lysis buffer incubation times on leukocytes subpopulations: flow cytometry mea-
surements of one sample for five different lysis buffer incubation times are plotted. By labeling the
leukocytes subpopulations with fluorescent markers, the relative concentrations of monocytes,
lymphocytes, and granulocytes were determined. Reference measurements of leukocyte subpo-
pulations in whole blood were performed with the Sysmex XN-350 (dashed lines). Each data point
shows average values of three measurements. All samples were from one healthy donor and were
labeled independently from the others.
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(a) (b)

Light source

Microfluidic
chip

40 × Objective

Fig. 4 Microfluidic and optical setup for the measurement of leukocytes: (a) differential DHM for
high-throughput imaging (105 fps) of blood cells using a 40× NA 0.55 objective and a 528-nm
SLED Koehler illumination light source. A PMMA microfluidic channel with one outlet and
five inlets was used for the alignment of cells and high-throughput sample presentation.
(b) Schematic representation of the sheath and sample flows of the channel cross section.
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Prior measurement

S01 CD54PE-CD64FITC
Post measurement
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S01 CD54PE-CD64FITC
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Prior measurement
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Post measurement
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(d) (e) (f)

Fig. 5 Influence of sample preparation and DHM measurement on leukocytes: activation meas-
urement of white blood cells (a)–(c) directly after sample preparation and (d)–(f) directly after DHM
measurement. Leukocytes were fluorescently labeled with (c) and (f) anti-CD45-VioBlue and anti-
CD71-FITC or (a), (b), (d), and (e) with anti-CD45-VioBlue, anti-CD54-FITC and anti-CD64-PE.
The measurements were performed using an MACSQuant Analyzer 10. Each subfigure shows
representative measurements of one sample. No significant activation of cells (gate A+ or C+)
was observed.
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Fig. 6 Optical setup of the differential DHM. The light beam emitted by a partially coherent
528-nm SLED light source (So) passes a Köhler illumination path and then passes through
the sample (Sa), which is located in the back focal plane of the microscope objective (MI1).
The beam is then split by a diffraction grating (G) into a diffracted (reference beam) and a non-
diffracted part (object beam). The diffracted beam passes a compensating means (11), whereas
the nondiffracted beam passes a wedge (W). Finally, both beams are focused on an imaging
device where the hologram can be observed. L1, L2, L5, L6, and L7, lenses; P, pinhole;
5, diffracted light beam; 6, nonzero-order diffracted parallel light beam; 7, nondiffracted light
beam; 6′, zero-order diffracted parallel light beam; 15, interferometer. Image adopted from
Ref. 20.
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Fig. 7 Exemplary false color phase images of three leukocyte subpopulations. (a) Lymphocyte
phase images show low difference between SPM 1 and SPM 2. (b) The OPDM of monocytes is
higher in SPM 1 than in SPM 2. This effect is even more distinct for (c) granulocytes. SPM 2 with
10-min incubation time. Scale bar is 5 μm.
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