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Abstract. The photoresponse mechanism of graphene/InSb heterojunction middle-wavelength
infrared (MWIR) photodetectors was investigated. The devices comprised a graphene/InSb
heterojunction as a carrier-injection region and an insulator region of graphene on tetraethyl
orthosilicate (TEOS) for photogating. The MWIR photoresponse was significantly amplified
with an increase in the graphene/TEOS cross-sectional area by covering the entire detector with
graphene. The graphene-channel dependence of the MWIR photoresponse indicated that the
graphene carrier density was modulated by photocarrier accumulation at the TEOS/InSb boun-
dary, resulting in photogating. The dark current of the devices was suppressed by a decrease in
the graphene/InSb carrier-injection region and the formation of the heterojunction using an
n-type InSb substrate. The results indicate that photocarrier transportation was dominated by
the formation of a Schottky barrier at the interface of the graphene/InSb heterojunction and
a Fermi-level shift under bias application. The high-responsivity and low-dark-current photo-
response mechanism was attributed to the graphene/InSb heterojunction diode behavior and the
photogating effect. The devices combining the aforementioned features had a noise equivalent
power of 0.43 pW∕Hz1∕2. The results obtained in our study will contribute to the development of
high-performance graphene-based IR image sensors. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole
or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.59.9
.097101]
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1 Introduction

Graphene-based infrared (IR) photodetectors are promising devices that take advantage of the
unique optoelectronic properties of graphene such as broadband light absorption,1–3 high carrier
mobility,4 high thermal conductivity,5–7 gate-tunable plasmons,8,9 and strong nonlinear optical
response,10–12 as well as its excellent chemical stability. Graphene exhibits broadband light
absorption over wavelengths ranging from the ultraviolet to the terahertz region and a fast photo-
response that provides a GHz-order bandwidth.13,14 In addition, graphene can be fabricated at a
low cost via nontoxic processing, which is more advantageous than quantum-type IR detector
materials. However, conventional graphene field-effect transistors (FETs) have drawbacks for IR
photodetector applications in which high-photoresponsivity and low-noise characteristics are
required to be consistent. The responsivity of graphene devices suffers because a single layer
of the graphene absorbs only 2.3% of light.15 In addition, the dark current of conventional gra-
phene FETs is extremely high because of the intrinsic nature of graphene with a zero-bandgap
structure.4,16 Meanwhile, the dark current should be suppressed to improve signal-to-noise per-
formance. To develop high-performance graphene IR photodetectors, these deficiencies should
be improved.
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We previously investigated responsivity enhancement and dark-current reduction techniques
individually using devices equipped with graphene/insulator layers and graphene/semiconductor
heterojunction structures.17,18 Although various studies have revealed Schottky-barrier formation
and carrier transport phenomenon in graphene and semiconductors including Si,19–27 Ge,28,29

GaAs,30–32 CdSe,33,34 SiC,35,36 and GaN,37,38 it is not clear how the extraordinary high responsivity
is obtained in the heterojunction structure. We have proved the graphene/insulator layer region
underwent photogating,3,17,39–44 which is one of the most effective responsivity enhancement can-
didates among possible techniques, such as pn junctions;45 turbostacking of graphene;40 plasmonic
metamaterial absorbers;46–48 the addition of photosensitizers includingMoS2,

49,50 ZnO,51,52 organic
semiconductor,53 and quantum dots;54–57 and optical waveguides.58 Photogating modulates the sur-
face carrier density of graphene by locating a photosensitizer in the vicinity of the graphene. This
multiplies the photocarrier transport from the graphene/semiconductor heterojunction region.
Moreover, the dark current can be suppressed by adjusting the applied voltage. However, the
detailed mechanism of this structure has not yet been investigated.

Here, we report on a detailed mechanism of the devices and design principle of structures to
improve the responsivity and dark-current characteristics in parallel. InSb, which is well known
photomaterial for middle-wavelength IR (MWIR) detection, was applied. The responsivity
enhancement was assessed by comparing devices entirely and partially covered with graphene.
The graphene-channel dependence of the MWIR photoresponse enhancement was investigated
to assess the photogating. A low-dark-current bias region was compared between devices with
distinct graphene/InSb heterojunction areas and dopants of InSb substrate. The MWIR photo-
response performance of the devices that combined the features above was evaluated.

2 Device Fabrication and Assessment

Figure 1 shows a schematic of the graphene/InSb heterojunction photodetector. The devices
consist of a graphene and p/n-doped InSb heterojunction and a graphene/tetraethyl orthosilicate
(TEOS) region. A 600-μm-thick InSb substrate with a 100-nm-thick TEOS insulator layer
was prepared. The carrier concentrations of the p/n-doped substrate are 2 × 1014−15 and 1 to
3 × 1015 cm3, respectively. The drain electrode consisted of 10-nm-thick Cr and 50-nm-thick
Au layers and was sputtered on the TEOS layer. The TEOS layer on the center region of the
devices was etched using buffered hydrogen fluoride to form a graphene/InSb region. Graphene
was fabricated by chemical vapor deposition and was transferred onto the surface of the devices
using a conventional graphene-transfer method.59,60 The graphene channel was formed through
a conventional photolithography process and oxygen plasma etching. To assess the graphene
cross-sectional area dependence of the MWIR photoresponse enhancement, the devices were
entirely or partially covered with graphene, as shown in Figs. 1(b) and 1(c).

Figure 2 shows the Raman spectrum obtained for the graphene channel using a 512 nm
excitation laser. The spectrum has the typical characteristics of graphene, including a G peak
at 1580 cm−1 and a D peak at 2700 cm−1, which corresponds to the bond stretching and second-
order breathing modes of sp2 carbon atoms, respectively. The spectrum indicates that a mono-
layer graphene channel was successfully formed.61,62

The photoresponse characteristics were investigated by current measurement. The devices
were set in a vacuum probe chamber with a cooler at 10−3 Pa and 77 K. The backside of the

Fig. 1 Schematic illustration of (a) graphene-based photodetector design and MWIR photores-
ponse in the devices (b) entirely or (c) partially covered with graphene.
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substrate was electrically grounded. Current measurements and voltage application were con-
ducted using a device analyzer (B1500A, Keysight). A quantum cascade laser (QD4550CM1,
Thorlabs) with a wavelength of 4.6 μm was used as the light source.

3 Results and Discussion

3.1 Basic Device Characteristics

Figure 3(a) shows the drain current (Id) response of the devices using a drain voltage (Vd) of 0 V.
The devices were exposed to the 4.6 μm laser with a 2.0 s irradiation cycle (0.8 s on and
1.2 s off). The devices exhibited a definite photoresponse by modulation with an Id of 10.37�
0.15 μA as the photocurrent with a base Id of 0.86 μA. Figure 3(b) shows the current-bias char-
acteristics of the devices under various laser powers. The photocurrent showed a linear increase
with variation of the laser light power and Vd application. The maximum MWIR light respon-
sivity of the devices was calculated to be 4.68 A∕W at a Vd of 0.5 V. We also confirmed that
the devices exhibited photoresponses under visible, near-IR, and MWIR around 3 to 5 μm.

3.2 Graphene Channel Dependence of Photogating

The MWIR photoresponse of the devices was investigated, and Fig. 4 shows a comparison of the
photocurrent characteristics of entirely and partially graphene-covered structures. The graphene/
InSb contact region was 50 × 50 μm2 in both devices. The entirely graphene-covered device
indicated a significant increase in the photocurrent, where the maximum photocurrent at a
Vd of 0.5 V reached 67.63� 4.03 μA, whereas that of the partially graphene-covered device
exhibited a maximum photocurrent of 9.44� 0.23 μA.

The photoresponse of the devices is mainly affected by the graphene/TEOS region because
the photogating occurs in this region. Under positive Vd application, photogenerated electrons
and holes are separated in the p-InSb photosensitizer, and electrons in the vicinity of the gra-
phene/InSb interface are injected into the graphene. On the other hand, photoelectrons excited in
the InSb under the graphene/TEOS contact region accumulate at the TEOS/InSb interface owing

Fig. 3 Photoresponse characteristics of the devices under 4.6 μm light irradiation. (a) Drain cur-
rent response of the devices under pulsed laser irradiation at Vd of 0 V. (b) Drain current–voltage
characteristics of the devices under various irradiation light powers.

Fig. 2 Raman spectrum of graphene channel in the TEOS insulator layer of the devices in
Fig. 1(b).
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to the depletion layer formed by Vd application, which changes the graphene’s surface carrier
density. As a result, the photocurrent of the devices can be amplified. This phenomenon is
referred to as photogating. The remaining TEOS region can provide additional photogating
by the photocarriers generated in the TEOS/InSb depletion layer, although it may be less effec-
tive for photoresponse enhancement because the carrier diffusion distance of the InSb is short, at
around a few micrometers,41 and the effective photocarrier region is situated only in the vicinity
of the graphene/TEOS region. The TEOS layer may also decrease the MWIR incident light
power that penetrates to the InSb substrate. TEOS-SiO2 has an absorption peak around 9 to
10 μm; therefore, the effect of this decrease is negligible. The results show that photogating
in the graphene/TEOS region plays a dominant role in the MWIR photoresponse.

To clarify the influence of the graphene/TEOS region on the responsivity enhancement, the
MWIR photoresponse characteristics obtained with different graphene/TEOS cross-sectional
areas were compared. Figure 5(a) shows a schematic diagram of a device structure. In the region
with graphene, SCH, L, and W are defined as the graphene/TEOS region, length, and width,
respectively. As shown in Fig. 5(b), the photoresponse increased with an increase in SCH.
Next, the effects of the graphene channel length L with a fixed W of 100 μm and W with a
fixed L of 200 μm were investigated. Figures 5(c) and 5(d) show that the photocurrent increased
as L and W increased.

The photoresponse in graphene FETs with photogating is dependent on the graphene-channel
aspect ratio because the devices operate under the same principles as metal–oxide–semiconductor

Fig. 5 (a) Schematic of graphene channel in the devices, indicating each symbolic character SCH,
W , and L. (b)–(d) Photocurrent characteristics in graphene photodetectors for various graphene-
channel cross-sectional areas (b) SCH, (c) lengths L, and (d) widths W .

Fig. 4 Comparison of photoresponse in devices with different graphene channel shapes.
(a) Photocurrent as a function of Vd , with graphene channel connecting graphene/InSb contact
entirely (red dotted) and partially (black solid) graphene coverage. Inset: schematic of respective
devices. (b) Photocurrent–time characteristics of devices at Vd of 0.5 V.
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FETs.42,44 By contrast, the devices with graphene/InSb heterojunction structures exhibit greater
photocurrent when the graphene-channel W, L, and SCH increase. An entirely covered graphene
channel enables the injected photocarriers in the graphene/InSb heterojunction region to spread to
the drain electrode in all directions. This increases the effective region of the photogating, which
multiplies the photocurrent. In addition, the photocurrent is nonlinearly increased with W.
Although an increase in L increases only the graphene/TEOS region for the photogating effect,
an increase in W increases both the graphene/TEOS region and graphene/InSb heterojunction
region. The heterojunction region size does not affect the graphene/InSb Schottky barrier height
but changes the flow rate of the photocarriers between graphene and InSb. Both the increase in
photocarriers injected into graphene and the improvement of the responsivity due to photogating
cause a nonlinear increase.

3.3 Dark-Current Reduction

Next, the dark-current dependence on the device structures was investigated. Figures 6(a) and
6(b) show the Vd-dependent dark-current characteristics with different graphene/InSb hetero-
junction cross-sectional areas and dopant types of the InSb substrate. The devices were fabri-
cated to be entirely covered with a graphene channel, with SCH and the graphene/n-InSb contact
region (SCI) set as 50 × 50 μm2, 100 × 100 μm2, and 200 × 200 μm2, respectively, as shown in
Fig. 6(c). The maximum dark current decreased with decreasing SCI, and the bias region of low
dark current within 5 μA expanded from 62 to 73 and 85 mV in graphene/p-InSb devices and
from 54 to 708 and 711 mV in graphene/n-InSb devices according to decreasing SCI. These
results indicate that SCI significantly affects the photoresponse and operating characteristics
of both dopant types.

The dark-current behavior was investigated using a band model of a graphene/InSb hetero-
junction, as shown in Figs. 6(d) and 6(e). A reverse bias decreases the Schottky barrier height
(ΦB), which corresponds to the work function difference between the Fermi level of graphene
and the valence band of n-InSb, and causes a leak current for both graphene/p-InSb and gra-
phene/n-InSb structures. The work function of InSb is around 4.77 eV63 and is very close to that
of the graphene at around 4.5 to 5.0 eV.64–66 Since the work function of graphene is strongly
affected by the surface condition45,67 in which the adhesion of moisture in the atmosphere or
residue causes hole doping,68 the Fermi level EF of graphene is lowered from the neutral point.
This lower shift of the Fermi level in graphene increasesΦB and suppresses the dark-current leak
at the graphene/n-InSb heterojunction.

Fig. 6 (a), (b) Dark-current characteristics in (a) graphene/p-InSb and (b) graphene/n-InSb devi-
ces with various carrier-injection areas SCI. (c) Schematic illustration of the devices. Energy band
diagram of (d) graphene/p-InSb and (e) n-InSb heterojunction under application of reverse bias.
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3.4 Performance Evaluation of Improved Structured Device

The MWIR photoresponse performance of the devices that combines the aforementioned fea-
tures was evaluated. The devices were fabricated as fully covered with a graphene channel of
20 × 20 μm2 as the MWIR light irradiation area, and the graphene/n-InSb contact region SCI was
decreased to 7 × 7 μm2, as shown in Fig. 7(a). Figure 7(b) shows the Vd-dependent dark/
photocurrent characteristics of the devices. The devices exhibited diode characteristics, and the
dark current was suppressed within 5 μA in a bias region of −200 to 200 mVand within 1 nA in a
bias region of −2.5 to 27.7 mV. The devices exhibited negative photocurrent in a negative Vd

region and positive photocurrent in a positive Vd region under 6.4 mW∕cm2 MWIR
light irradiation. Figure 7(c) shows the MWIR performance of the devices with the dark current
of −0.96 nA� 0.58 pA and photocurrent of −8.67� 0.08 nA at a Vd of −1 mV, which cor-
responds to a noise equivalent power (NEP) of 0.43 pW∕Hz1∕2. The performance of the gra-
phene photodetectors is more dependent on the device fabrication process and the graphene
synthesis method than on the device structure. The NEP value was significantly improved from
94.5 nW∕Hz1∕2 in our previous work,17 where the graphene and other device elements were
prepared in the same manner.

The devices exhibited a high responsivity that exceeded 100% of the external quantum effi-
ciency under a large bias application. The responsivity reached 6.14 A∕W at Vd at −0.2 V and
12.6 A∕W at Vd at 0.1 V. Figures 7(d) and 7(e) show band models of the graphene/n-InSb het-
erojunction under reverse and forward bias. Under reverse-bias negative Vd application, the
Fermi level is upshifted in the graphene. ΦB is further decreased with the upshift of the
Fermi level by photogenerated electrons in the graphene from EF to EFphoto. The photogenerated
electrons can obtain enough energy to generate an avalanche multiplication process at the
depletion layer formed in the graphene/n-InSb heterojunction. Since the carrier transportation
has not alienated the negative Vd region, the dark current is also increased with the photocurrent.
By contrast, a positive Vd application and photogenerated holes decrease ΦB, and the photo-
generated electrons in the InSb and the holes in graphene are transported between each other.
A further increase of positive Vd promotes the recombination of the photogenerated electrons
and injected holes in n-InSb, and the photocurrent decreases. The results obtained here indicate
that the high performance of the devices stands on the formation of Schottky barriers at the
interface of the graphene/n-InSb heterojunction and photocarrier transportation.

Fig. 7 Photoresponse characteristics in graphene/n-InSb photodetectors. (a) Optical microscopy
image of the device. (b) Dark current (black, solid) and photocurrent (red, dotted) voltage char-
acteristics of the devices. (c) Photocurrent–time characteristics of the devices under reverse bias
application of −1 mV. (d), (e) Schematic of energy band diagram of the devices under (d) reverse
bias of −0.2 V and (e) forward bias of 0.1 V as indicated in (b).
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4 Conclusion

We investigated graphene/InSb heterojunction MWIR photodetectors that can achieve high
responsivity and low-dark-current characteristics. The MWIR photoresponse of the devices indi-
cated that the injected photocarriers from the substrate to graphene were amplified by the photo-
gating induced in the graphene/TEOS region. The photocurrent characteristics for various
graphene channel sizes indicated that the photocurrent changes linearly with the cross-sectional
area of the graphene/TEOS region, in which the photogating contributes large photocurrent
modulation. In addition, the graphene shape entirely covers the device area, thus enhancing the
photogating. It was also demonstrated that the graphene–InSb substrate heterojunction region
has a significant influence on the dark-current performance, and the dark current was suppressed
by a decrease in the graphene/InSb carrier-injection region and formation of the heterojunction
using an n-type InSb substrate. The voltage-dependent current characteristics indicated that pho-
tocarrier transportation was dominated by the formation of a Schottky barrier at the graphene/
InSb heterojunction and a Fermi-level shift of the graphene under bias application. The devices
that combined these features exhibited NEP of 0.43 pW∕Hz1∕2. The results obtained in this
study will contribute to the development of high-performance graphene-based IR image sensors.
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