Through an innovative public-private partnership, a new generation of high-fidelity imaging spectrometers has been designed for the detection and measurement of methane (CH4) and carbon dioxide (CO2) plumes from super-emitters to help improve accounting and enable reduction of greenhouse gases in the Earth’s atmosphere. Two identical instruments, built concurrently at NASA Jet Propulsion Laboratory (referred to by JPL as the Carbon Plume Mapper project “CPM”) and Planet Labs as part of the Carbon Mapper Coalition, will measure the spectral range of 400 – 2500 nm with a spectral sampling of 5.0 nm. The identical optical design comprises a three-mirror anastigmat (TMA) telescope and Dyson form spectrometer which reduces volume and mass for a fast (F/1.8) optical system. The instruments will be integrated into Planet-built Tanager satellites and launched into low-Earth orbit (LEO). This work describes the assembly and alignment of the two identical instruments. At the subsystem level, both instruments follow the same procedure. For telescope alignment, the mirrors are first coarsely aligned with a coordinate measuring machine (CMM) and then finely aligned in a double-pass interferometer setup. The spectrometer subsystem is aligned onaxis using a commercial lens alignment instrument for precise, non-contact measurements. The telescope and spectrometer alignment results and performance are presented and compared. At the system level, the procedures deviate due to the separate and unique optical ground support equipment (OGSE) configurations utilized by JPL and Planet to implement the same instrument design. Both end-to-end optical alignment configurations are discussed, and the final CPM performance is shown with a focus on the five key and driving imaging spectrometer performance requirements.
Through an innovative public-private partnership, a new generation of high-fidelity hyperspectral imaging spectrometers has been designed to pinpoint, quantify, and track methane (CH4) and carbon dioxide (CO2) point-source emissions from super-emitters to help enable reduction of greenhouse gases in the Earth’s atmosphere. Two identical instruments, built concurrently at NASA Jet Propulsion Laboratory (referred to by JPL as the Carbon Plume Mapper project, CPM) and Planet Labs as part of the Carbon Mapper Coalition, feature an identical design which comprises a glass-ceramic, three-mirror anastigmat (TMA) telescope, held in place via a composite metering structure, and Dyson form spectrometer which reduces volume and mass for a fast (F/1.8) optical system. The telescope has a focal length and cross-track field of view (FOV) of 400 mm and 2.6 deg, respectively. Operating in the 400 – 2500 nm spectral range with 5.0 nm sampling, this spectrometer design has the sensitivity and resolution required to meet the demanding needs of space-based detection and quantification of CO2 and CH4 emissions. This work describes the instruments’ optomechanical configuration.
The Carbon Plume Mapper (CPM) instrument is a high-fidelity imaging spectrometer developed to pinpoint, quantify, and track methane (CH4) and carbon dioxide (CO2) point source emissions to help enable reduction of greenhouse gases in the Earth’s atmosphere. CPM will operate over the spectral range of 400 – 2500 nm with a spectral sampling of 5.0 nm. CPM will be integrated into an industry partner spacecraft bus and launched into low-Earth orbit (LEO). The optical design comprises a three-mirror anastigmat (TMA) telescope and Dyson form spectrometer which reduces volume and mass for a fast (F/1.8) optical system. An overview of the CPM optical design, development, and current status is discussed.
Starting in 2023, the Carbon Mapper public-private partnership will launch two imaging spectrometers into low earth orbit as the first demonstration satellites for a larger, emerging constellation. This mission is a critical collaboration between several partners including Planet, Carbon Mapper, Arizona State University, NASA’s Jet Propulsion Laboratory, the University of Arizona, the High Tide Foundation, California Air Resources Board, and the Rocky Mountain Institute. This hyperspectral constellation will complement Planet’s existing high-spatial and high-temporal mission lines and increase the ability to measure and monitor the impacts of climate change on our planet and tackle dynamic, wide-ranging and complex challenges such as sustainability. Each satellite is equipped with a 400 - 2500 nm hyperspectral imaging system capable of addressing a wide range of applications. The core mission for the Carbon Mapper Mission is to monitor climate risks (methane, CO2) but it has capacity to collect data for other sectors such as Defense, Intelligence, Agriculture, Mining, and others. The Carbon Mapper Mission is a tasked system and is designed to be responsive to dynamic events where analysis in a matter of days or hours may be important. In this paper, we provide an overview of the anticipated technical capabilities of the system and discuss applications for the Defense and Intelligence communities. We will also outline how the Carbon Mapper Mission can work in conjunction with the rest of the Planet constellations to enable unique fusion products.
The Ultra-Compact Imaging Spectrometer Moon (UCIS-Moon) instrument is an imaging spectrometer designed for integration with a lander or rover for lunar surface science missions. Operating over a 600-3600 nm spectral range with 10 nm sampling and 1.15 mrad IFOV, UCIS-Moon is capable of detecting spectral absorptions from common lunar minerals, OH species, molecular H2O, water ice, organics, and placing mineral identifications within an established geologic context at the cm to m scale. We present an instrument design capable of surviving the harsh lunar environment in the daytime with temperatures as high as 370 K, while providing high-quality spectral data.
The Earth Surface Mineral Dust Source Investigation (EMIT) instrument is a high fidelity imaging spectrometer developed to characterize surface mineralogy of the Earth's dust source regions over the spectral range of 380- 2500 nm and spectral sampling of 7.4 nm. EMIT will close the current knowledge gap in dust source mineral composition by collecting over 1 billion high signal-to-noise ratio spectra in this region of our planet. These new measurements will be used in conjunction with state-of-the-art Earth System Models to understand and reduce the uncertainty in the radiative forcing effect of mineral dust aerosols. EMIT will be deployed on the International Space Station that has an orbit that is well suited for measuring the arid land regions of the Earth. The optical design utilizes a Dyson spectrometer to reduce volume and mass for a fast (F/1.8) and wide swath (1240 samples) optical system. An overview of the EMIT optical design, development, and current status are discussed.
We discuss detailed tolerancing methods developed for imaging spectrometers at NASA Jet Propulsion Laboratory, California Institute of Technology using the Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer as an illustrative example. We tolerance five metrics simultaneously: along-track response function, crosstrack response function, spectral response function, spectral centroid uniformity, and spatial centroid uniformity. A method to calculate tolerancing sensitivities for each metric directly, a method to statistically combine Monte Carlo files from multiple tolerancing runs, and example summary error budgets that communicate the key and driving tolerances for each metric are discussed. These methods facilitate rapid and semi-automated assessment of the predicted performance of imaging spectrometer systems from design through to assembly and launch life cycle, using metrics that are directly relevant to the extraction of accurate spectroscopic data from these instruments.
The Snow and Water Imaging Spectrometer (SWIS) is a science-grade imaging spectrometer designed for CubeSat integration, spanning a 350- to 1700-nm spectral range with 5.7-nm sampling, a 10-degree field-of-view, and 0.3-mrad spatial resolution. The system operates at F / 1.8, providing the high throughput for low-reflectivity (<1 % ) water surfaces, while avoiding saturation over bright snow or clouds. The SWIS design utilizes heritage from previously demonstrated instruments on airborne platforms while advancing the state of the art in compact sensors of this kind in terms of size and spectral coverage. Compared with airborne campaigns, the CubeSat platform allows for more frequent and regular sampling, while maintaining intermediate to high resolution relative to heritage global sensors. Through frequent repeat observations from space at a moderate spatial resolution, SWIS can address key science questions concerning aquatic and terrestrial ecosystem changes, cryosphere warming and melt behavior, cloud and atmospheric science, and potential impacts of climate change and human activities on the environment.
The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.
The Snow and Water Imaging Spectrometer (SWIS) is a fast, high-uniformity, low-polarization sensitivity imaging spectrometer and telescope system designed for integration on a 6U CubeSat platform. Operating in the 350-1700 nm spectral region with 5.7 nm sampling, SWIS is capable of simultaneously addressing the demanding needs of coastal ocean science and snow and ice monitoring. New key technologies that facilitate the development of this instrument include a linear variable anti-reflection (LVAR) detector coating for stray light management, and a single drive on-board calibration mechanism utilizing a transmissive diffuser for solar calibration. We provide an overview of the SWIS instrument design and potential science applications and describe the instrument assembly and alignment, supported by laboratory measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.