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Random Variables and Cumulative Distribution

A probability distribution shows the probabilities
observed in an experiment. The quantity observed in a
given trial of an experiment is a number called a random
variable (RV). In the following, RVs are designated by
boldface letters such as x and y.

• Discrete RV: a variable that can only take on certain
discrete values.

• Continuous RV: a variable that can assume any
value within a specified range (possibly infinite).

For a given RV x, there are three primary events to
consider involving probabilities:

{x≤ a}, {a <x≤ b}, {x> b}

For the general event {x ≤ x}, where x is any real number,
we define the cumulative distribution function (CDF)
as

Fx(x)=Pr(x≤ x), −∞< x <∞

The CDF is a probability and thus satisfies the following
properties:

1. 0≤ Fx(x)≤ 1, −∞< x <∞

2. Fx(a)≤ Fx(b), for a < b

3. Fx(−∞)= 0, Fx(∞)= 1

We also note that

Pr(a <x≤ b)= Fx(b)−Fx(a)

Pr(x> x)= 1−Fx(x)
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Functions of One RV

In many cases, an examination is necessary of what hap-
pens to RV x as it passes through various transformations,
such as a random signal passing through a nonlinear de-
vice. Suppose that the output of some nonlinear device
with input x can be represented by the new RV:

y= g(x)

If the PDF of x is known to be fx(x), and the function
y= g(x) has a unique inverse, the PDF of y is related by

fy(y)= fx(x)
|g′(x)|

If the inverse of y= g(x) is not unique, and x1, x2, . . . , xn are
all of the values for which y= g(x1)= g(x2)= ·· · = g(xn), then
the previous relation is modified to

fy(y)= fx(x1)
|g′(x1)| +

fx(x1)
|g′(x1)| + · · ·+ fx(xn)

|g′(xn)|

Another method for finding the PDF of y involves the
characteristic function. For example, given that y = g(x),
the characteristic function for y can be found directly from
the PDF for x through the expected value relation

Φy(s)= E[eisg(x)]=
∫ ∞

−∞
eisg(x) fx(x)dx

Consequently, the PDF for y can be recovered from
characteristic function Φy(s) through inverse relation

fy(y)= 1
2π

∫ ∞

−∞
e−isyΦy(s)ds
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Example: Square-Law Device

The output of a square-law device is defined by the
quadratic transformation

y= ax2, a > 0

where x is the RV input. Find an expression for the PDF
fy(y) given that we know fx(x).

Solution: We first observe that if y< 0, then y= ax2 has no
real solutions; hence, it follows that fy(y)= 0 for y< 0.

For y> 0, there are two solutions to y= ax2, given by

x1 =
√

y
a

, x2 =−
√

y
a

where

g′(x1)= 2ax1 = 2
p

ay

g′(x2)= 2ax2 =−2
p

ay

In this case, we deduce that the PDF for RV y is defined
by

fy(y)= 1
2pay

[
fx

(√
y
a

)
+ fx

(
−

√
y
a

)]
U(y)

where U(y) is the unit step function.

It can also be shown that the CDF for y is

Fy(y)=
[
Fx

(√
y
a

)
−Fx

(
−

√
y
a

)]
U(y)
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Example: Correlation and PDF

Consider the random process x(t) = acosωt + bsinωt,
where ω is a constant and a and b are statistically
independent Gaussian RVs, satisfying

〈a〉 = 〈b〉 = 0, 〈a2〉 = 〈b2〉 =σ2

Determine

1. the correlation function for x(t), and

2. the second-order PDF for x1 and x2.

Solution: (1) Because a and b are statistically independent
RVs, it follows that 〈ab〉 = 〈a〉〈b〉 = 0, and thus

Rx(t1, t2) = 〈(acosωt1 +bsinωt1)(acosωt2 +bsinωt2)〉
= 〈a2〉cosωt1 cosωt2 +〈b2〉sinωt1 sinωt2

= σ2 cos[ω(t2 − t1)]

or

Rx(t1, t2)=σ2 cosωτ, τ= t2 − t1

(2) The expected value of the random process x(t) is 〈x(t)〉 =
〈a〉cosωt+ 〈b〉sinωt = 0. Hence, σ2

x = Rx(0) = σ2, and the
first-order PDF of x(t) is given by

fx(x, t)= 1

σ
p

2π
e−x2/2σ2

The second-order PDF depends on the correlation
coefficient between x1 and x2, which, because the mean
is zero, can be calculated from

ρx(τ)= Rx(τ)
Rx(0)

= cosωτ

and consequently,

fx(x1, t1; x2, t2)= 1
2πσ2|sinωτ| exp

(
−

x2
1 −2x1x2 cosωτ+ x2

2

2σ2 sin2ωτ

)
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Memoryless Nonlinear Transformations

Consider a system in which the output y(t1) at time t1
depends only on the input x(t1) and not on any other past
or future values of x(t). If the system is designated by the
relation

y(t)= g[x(t)]

where y = g(x) is a function assigning a unique value of
y to each value of x, it is said that the system effects a
memoryless transformation. Because the function g(x)
does not depend explicitly on time t, it can also be said
that the system is time invariant. For example, if g(x) is
not a function of time t, it follows that the output of a time
invariant system to the input x(t+ε) can be expressed as

y(t+ε)= g[x(t+ε)]

If input and output are both sampled at times t1, t2, . . . , tn

to produce the samples x1,x2, . . . ,xn and y1,y2, . . . ,yn,
respectively, then

yk = g(xk), k = 1,2, . . . ,n

This relation is a transformation of the RVs x1,x2, . . . ,xn

into a new set of RVs y1,y2, . . . ,yn. It then follows that the
joint density of the RVs y1,y2, . . . ,yn can be found directly
from the corresponding density of the RVs x1,x2, . . . ,xn

through the above relationship.

Memoryless processes or fields have no memory of other
events in location or time. In probability and statistics,
memorylessness is a property of certain probability
distributions—the exponential distributions of non-
negative real numbers and the geometric distributions
of non-negative integers. That is, these distributions are
derived from Poisson statistics and as such are the only
memoryless probability distributions.
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