
interesting alternative is that phase-shifted intensities of each pixel at
different time instances are recorded at four neighboring pixels at the same
time instance.60 These variations are called the spatial phase-shifting (SPS)
technique.

1.4 Fourier Transform Technique

Another fundamental and successful technique for phase extraction is to
introduce a spatial carrier into a fringe pattern, followed by a Fourier
transform. The carrier can be introduced by simply tilting the mirror
reflecting the reference beam. This technique was originally proposed for
each line of a fringe pattern and is thus 1D.61,62 It was also used for 1D
temporal data.63 The algorithm was later extended to 2D64 and 3D.65 An
overview of the technique can be found in Ref. 66. The 2D case is used here
for explanation.

The Fourier transform is an important harmonic analysis tool.43,44 A 1D
forward and inverse Fourier transform pair is defined as

Ff ð�xÞ ¼
Z 1

�1
f ðxÞexpð�j�xxÞdx, ð1:28Þ

f ðxÞ ¼ 1
2p

Z 1

�1
Ff ð�xÞexpð j�xxÞd�x, ð1:29Þ

where Ff ð�xÞ is the Fourier transform (or Fourier spectrum) of f ðxÞ, and �x is
the frequency coordinate in the Fourier domain. For temporal data, we
simply replace x and �x with t and �t, respectively. A 2D Fourier transform
pair is similarly defined as follows:

Ff ð�x, �yÞ ¼
Z 1

�1

Z 1

�1
f ðx, yÞexpð�j�xx� j�yyÞdxdy, ð1:30Þ

f ðx, yÞ ¼ 1
4p2

Z 1

�1

Z 1

�1
Ff ð�x, �yÞexpð j�xxþ j�yyÞd�xd�y, ð1:31Þ

where Ff ð�x, �yÞ is the Fourier transform of f ðx, yÞ, and j ¼ ð�x, �yÞT is the
frequency coordinate in the Fourier domain; the superscript T is used for
matrix or vector transpose and will be used throughout this book. A higher-
dimension Fourier transform pair can be similarly defined. Fast Fourier
transform (FFT) has been developed to accelerate the computing. Fourier
transforms are vastly important and can be explored in more depth in
Refs. 43 and 44. Fourier optics67 is a good example of its tremendous
applicability in optics.

A carrier fringe pattern can be written as

f ðx, yÞ ¼ aðx, yÞ þ bðx, yÞcos½wðx, yÞ þ vcxxþ vcyy� þ nðx, yÞ, ð1:32Þ
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where vc ¼ ðvcx, vcyÞT denotes the spatial carrier frequency. Euler’s formula
is used:

expð jhÞ ¼ cos hþ jsin h, ð1:33Þ
where j ¼ ffiffiffiffiffiffiffi�1

p
. With Euler’s formula, Eq. (1.32) can be rewritten as

f ðx, yÞ ¼ aðx, yÞ þ cðx, yÞexp½ jðvcxxþ vcyyÞ�
þ c�ðx, yÞexp½�jðvcxxþ vcyyÞ� þ nðx, yÞ, ð1:34Þ

where the superscript� indicates the conjugate of a complex number, and

cðx, yÞ ¼ 1
2
bðx, yÞexp½ jwðx, yÞ�: ð1:35Þ

A 2D Fourier transform on Eq. (1.34) yields

Ff ð�x, �yÞ ¼ Fað�x, �yÞ þ Fcð�x � vcx, �y � vcyÞ
þ Fc�ð�x þ vcx, �y þ vcyÞ þ Fnð�x, �yÞ : ð1:36Þ

In the Fourier domain, Fað�x, �yÞ, Fcð�x � vcx, �y � vcyÞ, and Fc�ð�x þ
vcx, �y þ vcyÞ concentrate around ð0, 0Þ, ðvcx, vcyÞ, and ð�vcx,� vcyÞ,
respectively, while Fnð�x, �yÞ usually permeates the entire Fourier domain.
If the first three terms in the right side of Eq. (1.36) do not overlap with each
other, the second term Fcð�x � vcx, �y � vcyÞ can be isolated and retained. If
it is further shifted toward the origin, Fcð�x, �yÞ is obtained. An inverse
Fourier transform of Fcð�x, �yÞ returns cðx, yÞ. The phase can then be
extractedusingEq. (1.17)withNðx, yÞ ¼ Im½cðx, yÞ� andDðx, yÞ ¼ Re½cðx, yÞ�,
which are the imaginary and real parts of cðx, yÞ, respectively.

The success of the Fourier transform technique requires the first three
terms in the right side of Eq. (1.36) to be separable. To fulfill this requirement,
Fað�x, �yÞ and Fcð�x, �yÞ should be band-limited, and the carrier frequency vc

should be high enough to drag the terms away from each other. The frequency
band of Fað�x, �yÞ depends on aðx, yÞ and is usually narrow according to the
property of fringe patterns P1. The frequency band of Fcð�x, �yÞ depends on
both bðx, yÞ and wðx, yÞ. Since bðx, yÞ varies slowly (P2), but wðx, yÞ can vary
quickly (P3), the latter has a more significant and often dominating influence.
When the carrier fringe pattern occurs densely in some regions and sparsely in
others, the band of Fcð�x, �yÞ is wide, making the isolation of Fcð�x, �yÞ
difficult. Even if Fcð�x, �yÞ can be successfully isolated within its band, noise
Fnð�x, �yÞ survives, resulting in a noisy phase.

The phase-shifting and Fourier transform techniques can be linked. As
shown in Eq. (1.18), the phase shifts can be seen as a temporal carrier so that
the phase-shifted fringe patterns can be written as

f ðx, y; tkÞ ¼ aðx, yÞ þ bðx, yÞcos½wðx, yÞ þ vcttk�
þ nðx, y; tkÞ, k ¼ 0, . . . , K � 1: ð1:37Þ
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For the example given in Section 1.3.2, we have vct ¼ p=2, tk ¼ k, K ¼ 4.
A 1D Fourier transform along the time axis is applied to Eq. (1.37). Since all
quantities, aðx, yÞ, bðx, yÞ, and wðx, yÞ, are time-invariant, Faðx, y; �tÞ,
Fcðx, y; �t � vctÞ, and Fc�ðx, y; �t þ vctÞ are all delta functions. Thus, we have

Fcðx, y; �t � vctÞ ¼ Ff ðx, y; �tÞdð�t � vctÞ: ð1:38Þ
With the definition of Fourier transform in Eq. (1.28), we have

Fcðx, y; �t � vctÞ ¼
X

3

k¼0

f ðx, y; tkÞexpð�jvcttkÞ
" #

dð�t � vctÞ, ð1:39Þ

which can be expanded as

Fcðx, y; �t � vctÞ ¼ f½ f ðx, y; t0Þ � f ðx, y; t2Þ�
þ j½ f ðx, y; t3Þ � f ðx, y; t1Þ�gdð�t � vctÞ: ð1:40Þ

After it is shifted toward the origin and undergoes an inverse Fourier
transform, we have

cðx, yÞ ¼ ½ f ðx, y; t0Þ � f ðx, y; t2Þ� þ j½ f ðx, y; t3Þ � f ðx, y; t1Þ�, ð1:41Þ
whose imaginary part and real part correspond exactly to Eqs. (1.15) and
(1.16), respectively, but are obtained from a different manner. The link
between the two techniques is explored in Ref. 68 and utilized, for example, in
Ref. 69 to convert from phase shifting to Fourier transform, and alternately in
Ref. 70 to convert from Fourier transform to phase shifting.

1.5 Phase Unwrapping

The significance of the phase-shifting and Fourier transform techniques
is that they successfully solve the first two difficulties in fringe pattern
analysis—ill-posedness (D1) and sign ambiguity (D2). However, the third
difficulty—order ambiguity (D3)—remains. As can be seen from Sections
1.3 and 1.4, in both techniques, the phase is calculated using Eq. (1.17),
which can only give the principle value of the arctangent function. We start
from the noiseless case, which yields wwðx, yÞ 2 ð�p, p� from Eq. (1.17).
Removing the order ambiguity and recovering wðx, yÞ from wwðx, yÞ is called
phase unwrapping.

The relationship between wwðx, yÞ and wðx, yÞ is as simple as

wðx, yÞ ¼ wwðx, yÞ þ 2kðx, yÞp, kðx, yÞ 2 Z , ð1:42Þ
which shows that to unwrap the phase is to determine kðx, yÞ. In the
following, wðx, yÞ is assumed to have spatial continuity, which is stronger than
piecewise continuity in P3. We assume that the pixel ðxi�1, yi�1Þ has already
been unwrapped, with a result of wðxi�1, yi�1Þ. Its neighboring pixel ðxi, yiÞ is
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to be unwrapped from wwðxi, yiÞ. Since the phase is continuous, if the
sampling is dense enough in space, we have

�p < wðxi, yiÞ � wðxi�1, yi�1Þ < p: ð1:43Þ
By incorporating Eq. (1.42), this inequality can be rewritten as

�p < wwðxi, yiÞ þ 2kðxi, yiÞp� wðxi�1, yi�1Þ < p, ð1:44Þ
which can be rearranged as

�0:5þ wðxi�1, yi�1Þ � wwðxi, yiÞ
2p

< kðxi, yiÞ < 0:5þ wðxi�1, yi�1Þ � wwðxi, yiÞ
2p

: ð1:45Þ
This relationship corresponds to the round function,

kðxi, yiÞ ¼ round
wðxi�1, yi�1Þ � wwðxi, yiÞ

2p

� �

, ð1:46Þ

where roundð�Þ rounds a decimal to its nearest integer. To summarize, the
phase can be unwrapped as

wðxi, yiÞ ¼ wwðxi, yiÞ þ round
wðxi�1, yi�1Þ � wwðxi, yiÞ

2p

� �

� 2p: ð1:47Þ

Although theoretically viable and simple, phase unwrapping is challenging
in practice due to noise (D4) and phase discontinuities (D5). If noise occurs, the
determination of kðxi, yiÞ in Eq. (1.46) can be wrong. If one pixel goes wrong,
the subsequent pixels are unlikely to return to the right track. In an invalid
region, the light field is weak, and the extracted phase is noisy. This case can
thus be treated as a noise problem in phase unwrapping. Phase discontinuities
can be classified into two categories. The first is caused by the order ambiguity
in phase extraction that uses an arctangent function. These are “pseudo-phase
discontinuities” and are removed by phase unwrapping. The second is
encountered when the physical quantities being measured are discontinuous,
for example, when the profile of an object being measured has staircases, or
when there are multiple disjoined objects. “True phase discontinuities” result
and are difficult to tackle.71 The most successful techniques for solving the
“true-phase discontinuities” include the temporal phase-unwrapping technique,
which assumes that the phase is temporally continuous and obtains the
continuous phase by accumulating phase difference between consecutive
frames,72 and the multifrequency technique, which generates a long synthetic
wavelength.73,74 Phase unwrapping has been an active topic for decades. Many
good algorithms have been proposed to meet the challenges.4,75,76

1.6 Fringe Pattern Classification

Based on the above introduction, the fringe patterns modeled in Eq. (1.9) are
further classified into four types. All of these types of fringe patterns can be
equipped with a time axis to make them a sequence of dynamic fringe patterns.
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1.6.1 Exponential phase fields

In both phase-shifting and Fourier transform techniques, the phase is
extracted by Eq. (1.17). By treating Dðx, yÞ and Nðx, yÞ as the real and
imaginary parts, respectively, a complex field Dðx, yÞ þ jNðx, yÞ can be
constructed as the first type of fringe pattern:

ðT1Þ f ðx, yÞ ¼ bðx, yÞexp½ jwðx, yÞ� þ nðx, yÞ: ð1:48Þ
This is called an exponential phase field (EPF) throughout the book. It is also
called a phasor.77 In the Fourier transform technique, the term cðx, yÞ is
naturally an EPF. Although wwðx, yÞ is not continuous, its EPF is continuous
because exp½ jwwðx, yÞ� ¼ exp½ jwðx, yÞ�. Processing an EPF is preferable to
processing a wrapped phase map.

1.6.2 Wrapped phase maps

A wrapped phase map is the angle of an EPF. Wrapped phase maps need to
be processed and unwrapped, and are considered the second type of fringe
pattern. By reasonably assuming that nwðx, yÞ 2 ð�p, p�, the left side of
Eq. (1.17) can be rewritten as wwðx, yÞ þ nwðx, yÞ þ 2kp, k 2 f�1, 0, 1g.
Thus, we model the second type of fringe pattern as

ðT2Þ f ðx, yÞ ¼ wwðx, yÞ þ nðx, yÞ: ð1:49Þ
A phase difference map between two speckle fields can be either extracted
from the speckle correlation fringe patterns given in Eq. (1.7), or directly
formed from two measured speckle phases.78 A T2 fringe pattern can be easily
converted to T1 with bðx, yÞ ¼ 1.

1.6.3 Carrier fringe patterns

A carrier fringe pattern is the third type of fringe pattern:

ðT3Þ f ðx, yÞ ¼ aðx, yÞ þ bðx, yÞcos½wðx, yÞ þ vcxxþ vcyy� þ nðx, yÞ: ð1:50Þ
It can also be converted to T1 through forward and inverse Fourier
transforms, as discussed in Section 1.4.

1.6.4 Single closed fringe patterns

A fringe pattern without a temporal or spatial carrier cannot be easily
converted to T1. As no carrier is presented, the fringe patterns are closed.
These are classified as the fourth type of fringe pattern:

ðT4Þ f ðx, yÞ ¼ aðx, yÞ þ bðx, yÞcos½wðx, yÞ� þ nðx, yÞ: ð1:51Þ
1.7 Fringe Pattern Simulation

Simulated fringe patterns are useful to quantitatively evaluate the
effectiveness of an algorithm. Experimental fringe patterns, on the other
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hand, are often used for qualitative and visual judgment, as they often lack
the ground truth data. Both simulated and experimental fringe patterns are
necessary in algorithm evaluation. Fringe patterns can be easily simulated
according to Eqs. (1.48)�(1.51) and the fringe properties P1�P4. Additive
noise is often modeled as white Gaussian noise. Speckle noise should also
be considered.

A speckle correlation fringe pattern can be simulated simply according to
Eqs. (1.7) and (1.8) with the following settings: a2r ðx, y; tÞ ¼ 1; a2oðx, y; tÞ is a
random variable with a negative exponential distribution; woðx, y; t0Þ is
uniformly distributed in ð�p, p�; Dwoðx, y; t0, tÞ is (piecewise) smooth; and
wrðx, yÞ ¼ 0.79 By this simulation the speckle radius is 1 pixel, and the speckle
diameter is 2 pixels, which means that the speckle (one period of waving
intensity, from bright to bright or from dark to dark) is sampled by 2 pixels,
which minimally satisfies the Nyquist sampling requirement.43�44

Another method for speckle simulation is to mimic a 4f system to
manipulate the spectrum of light field.80 A low-pass filter Lð�x, �yÞ is applied
to the object beams to mimic an aperture,

Aoðx, y; tÞ ¼ F�1
	

F
�

aoðx, y; tÞexp½ jwoðx, y; tÞ�
�

Lð�x, �yÞ



, ð1:52Þ
where Fð�Þ and F�1ð�Þ are forward and inverse Fourier transforms, respectively;
woðx, y; tÞ is a random variable uniformly distributed in ð�p, p�; and
aoðx, y; tÞ ¼ 1 is set to all t for simplicity. Similarly, the reference beam
Arðx, y; tÞ ¼ 1 is set to all t for simplicity. Two speckle fields Iðx, y; t0Þ and
Iðx, y; tÞ at time instances t0 and t, respectively, are simulated according to
Eq. (1.3). Between these two time instances, the phase change Dwoðx, y; t0, tÞ is
(piecewise) smooth. A speckle correlation fringe pattern, Icðx, y; t0, tÞ, is
generated according to Eq. (1.6). The absolute difference as a speckle
correlation fringe pattern Icðx, y; t0, tÞ ¼ jIðx, y; tÞ � Iðx, y; t0Þj is also a
frequently used option. The following circle is a possible design of the low-
pass filterLð�x, �yÞ that can be used to generate speckle with a radius of rs pixels
in an image with a size of Nx �Ny ¼ N �N:

Lð�x, �yÞ ¼ 1, �2x þ �2y 	
N
2rs

� �2

0, otherwise:

ð1:53Þ

8

>

<

>

:

When rs increases, the aperture size decreases, and more high-frequency
components are blocked, resulting in a larger speckle size. The minimum
speckle radius is 1 pixel.

Two phase distributions with a size of Nx �Ny ¼ N �N are used for
demonstrations in this book. The first phase distribution is quadratic and
symmetrical, thus simple, but not uncommon:

wðx, yÞ ¼ 0:5k

ðx�N=2Þ2 þ ðy�N=2Þ2�, 1 	 x, y 	 N , ð1:54Þ
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where the parameter k is used to control fringe density. This is called the
circular phase. The second phase distribution contains several peaks and is
more complicated:

wðx, yÞ ¼ k � peaksðNÞ, ð1:55Þ
where the parameter k is again used to control fringe density, and peaksðNÞ is
a built-in MATLAB® function that uniformly samples N �N points from the
following surface:

zðx, yÞ ¼ 3ð1� xÞ2exp½�x2 � ðyþ 1Þ2� � 10ðx=5� x3 � y5Þexpð�x2 � y2Þ
� 1

3
exp½�ðxþ 1Þ2 � y2�, �3 	 x, y 	 3 : ð1:56Þ

This is called the “peaks phase.”
A fringe pattern with aðx, yÞ ¼ bðx, yÞ ¼ 1 and the circular phase

(k ¼ 0:005) is shown in Fig. 1.2(a). Additive noise with mean of zero and
standard deviation of 1 is added. A fringe pattern with the peaks phase (k ¼ 5)
is shown in Fig. 1.2(b). The speckle noise with radius of 1 is simulated.

1.8 Windowed Fringe Pattern Analysis

In most optical measurement, a point in a field undergoing measurement has
nothing to do with a point far away, but it is likely similar to a point nearby.
This local similarity is helpful in suppressing noise and estimating parameters.
Many algorithms indeed process a fringe pattern in a block-by-block (or
window-by-window) manner. We call this windowed fringe pattern analysis.
Nonlocal algorithms81,82 are not the focus of this book.

In one extreme, the phase-shifting technique works in a small 1D window
along the t axis. Since the window is small and only one pixel every few frames

Figure 1.2 Simulated fringe patterns (a) with the circular phase and additive noise, and
(b) with the peaks phase and speckle noise.
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is involved, a strong assumption for parameters can be made: the phase, the
background, and the fringe amplitude are all constant in different frames.
Because of this assumption, the phase can be easily retrieved. However, a
small window cannot sufficiently suppress the noise since only a few frames
are involved for each pixel. In the other extreme, the 2D Fourier transform
technique works in the largest window—the entire frame. Only the weak
assumption that the phase is band-limited can be made. Although many pixels
are involved, this technique does not guarantee sufficient noise suppression
and is largely influenced by the frequency bandwidth of Fcð�x, �yÞ. For
example, in Eq. (1.36), if each of Fcð�x � vcx, �y � vcyÞ and Fc�ð�x þ vcx, �y þ
vcyÞ occupies half of the Fourier domain, when Fcð�x � vcx, �y � vcyÞ is
isolated and retained, half of the noise energy will survive.

The question is whether a medium-sized window produces better results.
Mean and median filters are good examples.83 Unfortunately, they do not
work well for waving structures in fringe patterns. A good exception is the
sine/cosine filter,84 but it fails to deal with fringe patterns with fast waving
structures.85 The waving structure in a fringe pattern is mainly caused by the
phase. Since the phase is smooth, at least piecewise (fringe property P3), near
a point ðu, vÞ it can be expanded into the Taylor series,86

wðx, yÞ � X

Nw

n¼0

1
n!

ðx� uÞ @

@x
þ ðy� vÞ @

@y

� �n

wðu, vÞ
� �

, ð1:57Þ

where Nw is the order of the expanded polynomial, n! denotes the factorial
of n, @=@x, @=@y are partial differentiations with respect to x and y
respectively, and the partial differentiations are applied to wðx, yÞ and
evaluated at ðu, vÞ. The phase can thus be approximated locally as a
polynomial. For example, the phase can be assumed to be constant (Nw ¼ 0),
linear (Nw ¼ 1), or quadratic (Nw ¼ 2), etc. A smaller Nw indicates a stronger
assumption, which is suitable in a smaller window. Based on these
assumptions, various algorithms have been developed to analyze fringe
patterns. These algorithms, such as spin filters (constant phase), regularized
phase tracking (linear phase), and windowed Fourier transform (quadratic
phase), will be explored in this book. Noise is sufficiently suppressed using
these techniques, making phase unwrapping and fringe demodulation much
easier. The Taylor expansion in Eq. (1.57) is 2D, but it can be extended to
1D or higher dimensions.

The phase extracted by windowed fringe pattern analysis may present
some ambiguities, due to the nature of optical interferometry. A well-known
example is the phase-order ambiguity, which can be removed by phase
unwrapping where phase continuity is enforced. The other is sign ambiguity
and can be removed by forcing the continuity of local frequency. “Continuity”
is defined by derivatives, which are the relationships between neighboring
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points. Thus, the natural process of removing the ambiguity begins at a seed
pixel, moves to its neighbor, and then to the neighbor’s neighbor, until all of
the pixels are processed. In this way, the processing footprint forms a path.
Among many possible paths, one reasonable option is to follow the decrease
of pixel quality. The high-quality pixels are processed first, followed by low-
quality pixels, so that if there is an error or failure, it is postponed. This is
called quality guidance. To combine the above two important concepts,
namely, windowed fringe pattern analysis and quality guidance, most
algorithms in this book are quality-guided windowed fringe pattern analysis.
We use the term windowed fringe pattern analysis to serve as a concise book
title with the understanding that quality guidance naturally follows.

A window isolates a patch of fringe pattern for analysis. There are many
window functions,87 among which, rectangular and Gaussian windows are
the most extensively used throughout this book. A rectangular window
treats the data in the window equally. It fully utilizes the data information
and is the most economical. It is always used when the window size has to be
small. Take a 1D rectangular window as an example. Its window size is
denoted as Nwx, covering ½�Nwx=2, Nwx=2� for a continuous window in
theoretical analysis, and ½�ðNwx � 1Þ=2, ðNwx � 1Þ=2� for a discrete window
in algorithm development. For a discrete window, the window size Nwx is an
odd number.

A Gaussian window has higher emphasis on the data near the window
center and lower emphasis on the data further away from the window center.
This is reasonable because the data in the center are usually more
trustworthy. A Gaussian window is often selected when the window size
can be luxuriously large.

For a continuous signal f ðxÞ, its Lp norm is defined as follows:88

k f kp ¼
Z 1

�1
j f ðxÞjp

� �
1
p

: ð1:58Þ

All signals with finite Lp norm form a space LpðRÞ. For a window gxðxÞ,
kgxk1 signifies the area under gxðxÞ, and kgxk2 emphasizes the energy of gxðxÞ.
A Gaussian window, with kgxk1 ¼ 1, and its Fourier spectrum, are

gxðxÞ ¼ 1
ffiffiffiffiffiffi

2p
p

sx
exp � x2

2s2
x

� �

, ð1:59Þ

Fgxð�Þ ¼ exp �s2
x�

2

2

� �

: ð1:60Þ

A Gaussian window, with kgxk2 ¼ 1, and its Fourier spectrum, are

gxðxÞ ¼
	

ps2
x


�1
4exp � x2

2s2
x

� �

, ð1:61Þ
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and Fgxð�Þ ¼
	

4ps2
x



1
4exp �s2

x�
2

2

� �

: ð1:62Þ

The Gaussian window is symmetrical, namely, gxð�xÞ ¼ gxðxÞ. Note that
the coordinate x is emphasized, but it can be replaced by other coordinates.
For example, gyðyÞ can be defined in the same way but along the y axis. A 2D
Gaussian window can be constructed as

gðx, yÞ ¼ gxðxÞgyðyÞ, ð1:63Þ
which is called separable. Discrete windows can be obtained by sampling the
continuous counterparts. The lp norm should be used, and is defined in the
same way as Eq. (1.58), except that the integration is replaced by summation.
All of the signals with finite lp norm form a space lpðZÞ. We generally call sx a
Gaussian window size, with the understanding that the actual window size is
Nwx ¼ 1 [covering ð�1, 1Þ] for a continuous window in theoretical analysis
and Nwx ¼ 2tsx þ 1 (covering ½�tsx, tsx�) for a discrete window in algorithm
development, where t ¼ 3 is a safe choice and t ¼ 2 is also frequently used to
shorten the window with minimal information loss.

We must mention that the phase wðx, yÞ can be discontinuous (D5). If this
happens, both the Taylor expansion in Eq. (1.57) for windowed fringe pattern
analysis and the continuity assumption for quality guidance are no longer
reasonable. As a consequence, the quality-guided windowed fringe pattern
analysis algorithms discussed in this book are usually very successful for cases
of continuity but may not be for cases of discontinuity.89 However, because
these algorithms respond differently to the continuous and discontinuous
regions, they can usually be used to differentiate regions or detect boundaries
between the regions, even with the presence of the discontinuity problem.

We link the windowed fringe pattern analysis to the sparse and redundant
representations that are under intensive study in the signal and image
processing community.90 Excellent algorithms have been developed in this
direction. For example, the BM3D91 can denoise a fringe pattern with very
good results. Interested readers will find that the algorithms developed in this
book also embody the spirit of sparsity and redundancy. These algorithms can
achieve outstanding performance because they enable precise modeling of
fringe patterns; thus, a perfect dictionary for fringe pattern representation can
be easily built. The importance of a data model is highlighted in Ref. 92.

Finally, the windowed fringe pattern analysis can be linked to another
important optical measurement method, digital image correlation (DIC).93,94

In DIC, the displacement of each image patch in the first image is determined
by finding its most similar patch in the second image. Thus, DIC performs a
windowed correlation analysis. Because the final correlation result of one
patch is usually used as the initial guess for the next patch in the DIC
implementation, quality guidance can play a role in path selection.95 Since
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DIC does not have the ambiguity problems associated with fringe pattern
analysis, and the noise is often light, the requirement for quality guidance is
not as demanding as in fringe pattern analysis. Interested readers can refer to
Ref. 96 for more information.

1.9 Book Organization

This book is organized by three interweaving threads. The first is the quality-
guided windowed fringe pattern analysis, which is the overarching theme of
the book and applies to all of the chapters. The second thread forms the main
structure by explaining how to process different types of fringe patterns
according to their respective features—exponential phase fields (Chapters 2
and 3), wrapped phase maps (Chapter 4), carrier fringe patterns (Chapter 5),
closed fringe patterns (Chapters 6 and 7), and a sequence of dynamic fringe
patterns (Chapter 8) are all explored. The third thread covers the A3
requirements for fringe pattern analysis algorithms. These requirements are
discussed throughout Chapters 2�8. In addition, Chapter 9 is dedicated to
acceleration through computing hardware.
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