
2.5 Calculating the Electronic Energy Levels of Rare Earth Ions

Before introducing the crystal field effects, it is necessary to calculate the
energy levels of the free ion. In the case of rare earth ions, the energy levels
and the spectroscopic assignments of the free ion were summarized by
Dieke.14 He introduced the following Hamiltonian:

H ¼ H0 þH1 þH2, ð2:29Þ
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whereH1þH2 ≡Veeþ Vso, as were defined by Eqs. (2.15), (2.16a), and (2.16b);
H0 is the zero-order approximation; ri is the Laplacian operator for the ith
electron ofmassme; andH

1 is the electrostatic repulsion between the 4f electrons,
assuming the central field approximation,15 whereby each electron moves
independently in a potential field of the nucleus plus an averaged field
representingall other electrons.TheHamiltonian termof themutual electrostatic
repulsion of the electrons cannot be neglected because there aremany electrons in
the system, so their total effect is comparable with the interaction between the
nucleus and the electrons, as expressed in Eq. (2.30) by

X
i

NðZe2=riÞ.
This approximation is justified by the following assumptions:

1. The field lacks electrostatic repulsions between the “outer” electrons, as
well as spin–spin interactions;

2. The interaction between the f electrons cannot be neglected as a small
perturbation to the nuclear–electron potential; and

3. The interaction potential of the ith electron with the field of the nucleus is
screened by the N�1 other electrons that are spherically averaged.

The electrostatic repulsion between the f electrons can be treated in two
limiting cases, namely, when the distance ri from the nucleus is large or when ri is
close to the nucleus and thus is small. There is usually a balance between the
repulsion and the attraction terms, and they approximately cancel each other.
Suppose that there is an atomic system with N electrons that are in motion
around a nucleus with a chargeZe, such that an electron i is located at a distance
ri from the nucleus, and the other N�1 electrons are distributed symmetrically
with an average distance rj from the nucleus (ri >> rj, rij is the mutual distance
between the ith and jth electrons). See Fig. 2.7 for this configuration.
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Figure 2.7 A schematic depiction of an N-electron system with N�1 electrons distributed
symmetrically and with central field forces (modified and reprinted with permission from
Condon and Shortley14).
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Recall that the mutual repulsion of the electrons and the spin–orbit
interaction Hamiltonian are defined by Eqs. (2.16c) and (2.16d) as

Vee ¼
XN
i>j¼1

e2

rij

and

VSO ¼
XN
i

�ðriÞ � Li � Si,

respectively, where the summation is over all of the electrons.
It is then assumed that rij 
 ri and that the ith electron will have a field as

a result of the repulsion, attraction, and screening effects of the N � 1
electrons:

� Ze2
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ri:
ð2:31Þ

Consdier a different situation, where ri 
 rj or even ri � rj, and the N � 1
electrons are distributed spherically around the nucleus. There is a constant
field and a constant potential inside the spherical shell with some radius a,
and the potential energy of the ith electron located inside the shell is
given by

� Ze2

ri
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a
: ð2:32Þ

To summarize, the potential energy U(r) is given by

UðrÞ 
 � Ze2

r

� �
þ C for small values of r, ð2:33Þ

and

UðrÞ 
 � ðZ �N þ 1Þe2
r

� �
for large values of r: ð2:34Þ

Condon and Shortley14 demonstrate a functional dependence of the
potential U(r) on r for both small and large values of r. Here, the f electrons
are termed “outer” electrons even though they lie closer to the nucleus than
the 5s or 5p electrons (see Fig. 2.7). Furthermore, according to Eq. (2.29), H1

is the electrostatic repulsion between the f electrons given by summation over
all of the electron pairs, assuming a central field approximation with a
spherical-symmetry electrostatic field due to the nucleus and due to other
filled shells:

H1 ¼
X
ij

e2

rij
, ð2:35Þ

where rij is the mutual distance between the ith and jth electrons.
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2.5.1 Spin–orbit coupling

The electrostatic interaction splits the energy levels of the 4f n electronic
configuration into LS terms, and the appropriate wavefunctions are
characterized by L, S, ML, and MS quantum numbers. Going back to
Eq. (2.29), the term H2 is defined as the spin–orbit interaction, and it is
given by:

H2 ¼
Xn
i¼1

�iðli � siÞ: ð2:36Þ

where �i is the spin–orbit interaction constant of the ith electron. This constant
is proportional to the effective positive charge and to the fine structure
constant. As can be seen in Table 2.4, there is a correlation between the
atomic number of the rare earth ion and the value of �.

Once again, note that if the energy separation between different LS terms
[Eq. (2.35)] is large compared with the spin–orbit coupling energy, a situation
arises where there is little mixing of the LS terms and the spin coupling states.
In this case, the Russell–Saunders approximation is used, and the spin–orbit
coupling operator appears as VLS ¼ l � L � S (see Section 2.2). Similarly, there
is a functional correlation between �i, defined by Eq. (2.36), and the value of
l. Under Russell–Saunders approximation, the wavefunctions are character-
ized by L, S, J, and MJ quantum numbers. The spin–orbit interaction
causes further splitting of each LS term into various values of J and MJ (J
multiplets).

The physical origin of the spin–orbit coupling is a result of the interaction
of the magnetic moment of the electron spin, MS ¼ qS/me (where q is the
electron charge, me is the electron mass, and S is the electron spin), with the
magnetic field that results from the motion of the electron in the electrostatic
field of the nucleus, which is defined as B ¼ �1/c2(� �E). The interaction

Table 2.4 Numerical values of the spin–orbit coupling parameter for several rare earth ions
(data from Dieke11). The number of electrons in the 4f shell and the atomic number are also
included.

Rare earth ion Atomic number (Z) Number of electrons (n) Empirical parameter � (cm�1)

Ce3þ 58 1 640
Pr3þ 59 2 759
Nd3þ 60 3 885
Eu3þ 63 6 1320
Gd3þ 64 7 1470
Tb3þ 65 8 1705
Ho3þ 67 10 2163
Er3þ 68 11 2393
Tm3þ 69 12 2617
Yb3þ 70 13 2883
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energy between the magnetic moment of the spin and the magnetic field B is
given by W ¼ �MS � B; after some mathematics, the magnetic field is given
by B ¼ �K � P � R ¼ K � L, and the spin–orbit interaction energy is given by

WLS ¼ K 0 � L � S,
where K’ is the spin–orbit constant defined as

K 0 ¼ �ðRÞ ¼ e2

mec2

� �
1

R3

� �
, ð2:37Þ

and R is the electron–nucleus distance (which is on the order of the Bohr
radius, namely, ao ¼ ℏ/mee

2).
The mutual interaction between the magnetic moment of the spin and the

magnetic field is regarded as a small perturbation to the energy levels that
result from a purely Coulombic interaction. Consider the simple case of a one-
electron system. Because the spin–orbit interaction couples both the spin and
the orbital motions of the electron, the appropriate angular momenta ml and
ms are not independent and thus are not “good” quantum numbers. The total
angular momentum j (j ¼ l þ s) and its z component represent an atomic
system similar to Eqs. (2.3) and (2.4), with total-angular-momentum quantum
numbers in the range of j l � sj � j �j l þ s j and in steps of j þ 1. The same is
true for J, L, and S, so that [Jz, Hso] ¼ [Lz þ Sz, Hso] ¼ 0, and [Jz, Hso] ¼ 0,
as well.

For atoms with a low atomic number, the effect of H2 is low, and thus H2

< H1. For atoms with a high atomic number, the effect of spin–orbit coupling
is greater than the Coulombic interaction between the outer electrons [see
Eqs. (2.35) and (2.36) for more details]. In this case, there is a coupling of the
spin and orbital angular momenta on single electrons to form individual j
values, which are further coupled via Coulombic interaction between the
electrons; this is the case with jj coupling. For the case of H2 < H1, namely,
when the spin–orbit interaction is smaller than the Coulombic interaction, it
was shown by Tinkham16 that the matrix elements of the spin–orbit operator,
i.e., Hso ¼ l � L � S ¼ l/2(J2 � L2 � S2), and the eigenvalues are l/2[(J(J þ 1)
� L(L þ 1) � S(S þ 1)] ¼ lJ, similar to Eqs. (2.10a) and (2.10b). The spin–
orbit splitting is also shown to be proportional to the larger values of J when
the two adjacent J levels are considered.

2.6 Energy Levels of Rare Earth Ions

Because the degeneracy of the f levels is removed by the interactions expressed
by theH1 and H2 Hamiltonians, as well as by the lattice crystal field, there are
~3400 levels and wavefunctions to be computed with one configuration. To
simplify the situation, it was first assumed that the dominant interaction is
between states within one configuration only, and the interactions between
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states of different configurations are ignored. This assumption is partially
justified because the 4f n configuration is shielded from the 5p and 5s
configurations; however, it was found that the overlap integral between the 4f
and 5p configurations is quite large, as can be seen in Fig. 2.2. The general
perturbation matrix S ¼ S(H1, H2, . . ., Hk) represents a general combination
of perturbation matrices Hk. With the assumption of Russell–Saunders
coupling, the energy levels of rare earth ions are characterized by L, S, and J,
and each level is (2L þ 1)(S þ 1)-fold degenerate.

As an example, the Yb3þ ion (4f13) has a unique electronic structure due to
its large Coulombic interaction, as well as a large spin–orbit interaction
constant �. Because of these larger interactions, the first excited state of Yb3þ

(namely, 4F5/2) is ~10,000 cm�1 above the ground state 4F7/2. The main
assumption of the energy-level calculations in the central field approximation
is that the wavefunction of a many-electron system is a sum of a single
electron wavefunction.17 As a consequence of this assumption, the matrix
representation of an N electron system is reduced to the sums of the
components of individual electrons, and can be calculated using the Coulomb
integral or exchange integral. The energies of the wavefunctions are calculated
using a set of Slater integrals, denoted by Fk, such that

Fk ¼
Z1
0

Z1
0

rk<
rkþ1
>

Ri
2ðnalaÞRj

2ðnblbÞdridrj, ð2:38Þ

in which R(nl) is the radial eigenfunction of the relevant configuration, a and b
are a set of quantum numbers that specify the central field of both i and j
electron pairs, and k is an integer that was introduced via a series of Legendre
polynomials (which are used to describe the electrostatic potential). Legendre
polynomials are given by the expression Pk(cos u), where u is the angle
between ri and rj, with the values of k ranging from 0 to 1. The square of the
radial eigenfunction R2(nl) is the probability of finding an electron in the
radius dri and drj. The symbols r< and r> are lesser and greater than ri and rj,
respectively. The Slater integral Fk appears in the Coulomb integral J(a,b) that
is used to calculate the Coulombic interaction:

Jða, bÞ ¼ ha,bje2r�1
ij ja, bi; ð2:39Þ

more specifically, it can be expressed as

Jða, bÞ ¼
X1
k¼0

akðlaml
a, lbml

bÞFkðnala,nblbÞ: ð2:40Þ

For f�f transitions within rare earth ions, the Slater integral is written as

Fk ¼ Fk=Dk, ð2:41Þ
where the values of Dk are ¼ 1, 225, 1089, 7361.34 for k ¼ 0, 2, 4, 6.
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The parameter F0 is a common additive constant to all levels, and
therefore it does not have any effect on the electronic structure of the atomic
system. The energy levels of rare earth ions can be expressed by three
parameters,17,18 namely, F2, F4, and F6, such that

F 2 ¼ F2=225,

F 4 ¼ F4=1089,

F 6 ¼ F6=7361:64:

ð2:42Þ

These integrals can be expressed in terms of Racah parameters Ek (k ¼ 0,
1, 2, 3, . . .), which are linear combinations of the Slater integrals. For
example,

E0 ¼ F0 � 2F2
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ð2:43Þ

Assuming that the wavefunctions under the central field approximation
are known, then the Slater integrals Fk or Fk can be calculated. Dieke noted
that by using further approximations such as the central Coulombic field
for f n configuration and the hydrogen-like radial wavefunctions, Fk can
be expressed in terms of a single parameter F2 and the effective nuclear
charge Z:

F4 ¼ 0:145F 2,

F6 ¼ 0:0164F 2,

F2 ¼ 12:4ðZ � 34Þ ðfor rare earth, triply ionized ionsÞ:
ð2:44Þ

A useful parameter to measure the effects of spin–orbit coupling, the
relative energy splitting and the relative energetic positions of the J
multiplets is defined as � ¼ �/Fk. It is assumed that the F2 parameter
characterizes the Coulombic interaction strength of the system, and �
characterizes the spin–orbit interaction. Figure 2.8 presents the relative
energy positions of various multiplets as a function �. The vertical dashed
lines in this figure indicate the case of Nd3þ (� ¼ 2.7) and Er3þ (� ¼ 5.7). It
is clear that for � ¼ 0 (no spin–orbit coupling), there is no splitting of the LS
terms, as can be expected.

Possible errors in calculating the energy levels of the f n configuration
using the described procedure are discussed in Chapter 6 of Dieke.14 A
summary and more information on the spectroscopic properties of rare-earth-
doped solids can be found in Refs. [1, 7, 13, 14, and 17].

46 Chapter 2




