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Preface

This book examines various biophotonics applications associated with
modern machine learning techniques and laser molecular imaging and
spectroscopy. Most of the existing books focus on either a specific
instrumental method, such as terahertz and IR spectroscopy or Raman
scattering, or a limited number of mathematical tools for raw data analysis.
We describe a thorough review of molecular imaging technologies and current
machine learning approaches to perform data analysis of gaseous, liquid
samples of biological origin and biotissues. Much of the material highlights
applications of machine learning to develop non-invasive medical diagnostics
tools.

Here, we present the basics of machine learning methods, which consider
the specificity of laser molecular imaging and spectroscopy medical data
features, such as the high dimensionality of raw data and a low number of
samples leading to a lack of representation. Modern trends such as deep
learning are not applied broadly in similar tasks because of the small volume
of available samples. There are two main reasons for this. The first is the high
variability of biological systems, which makes biophysical relations difficult to
discover. The second is ethical restrictions on studies with living beings. These
reasons require new methods to deal with high-dimensional but low-
numbered data (contrary to big data, which operates with low-dimensional
yet outnumbered data).

Speaking of the development of both biophotonics hardware and
software, we try to make future forecasts based on current trends in these
fields. We also discuss available hardware platforms: home and self, medical
screening, and specialized devices for end-level diagnosis. General trends
include personalized medicine and bringing high-tech diagnostics from
hospitals directly to individuals.

This book focuses on the most suitable approaches for medical screening
and monitoring. Some ideas can be used in personal diagnosis tool design and
production. Machine learning pipeline algorithms can be useful for high-
accuracy multi-modal diagnosis.

This book is intended for specialists in the fields of biomedical optics, laser
spectroscopy, bioengineering, and medical engineering. To provide practical
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help to readers who plan to use the machine learning methods in their
research, the Supplemental Materials include sample datasets and the Python
modules for the most useful algorithms described in the book. The link to the
Supplemental Materials website is

https://github.com/biophotonics-lab-tsu/monograph

For convenience, we use Roman superscript numbers to link key terms
and specific methods with the chapter that defines them. Also, the first
mention of a method is italicized.
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Chapter 1

Fundamental Concepts Related
to Laser Molecular Imaging

Introduction

Laser molecular imaging deals with analyzing the spatial distribution and
temporal variation of biomolecules in a human body and samples of a
biological origin. Similar studies are associated with the discovery and
analysis of biomarkers. Suitable biomarkers are vital for monitoring a
person’s current metabolism and disease detection, but the dependence of a
disease, a shift in metabolism, and registered spectral data are latent and
complicated. Accordingly, specific methods of spectral data analysis are
necessary. Currently, artificial intelligence is the most promising approach in
this field. This chapter gives general information about the biomarker
conception, molecular laser imaging, and artificial intelligence, including
machine learning. The basic concepts introduced here are described in detail
in Chapters 2–4.

1.1 Molecular Biomarkers

1.1.1 Biomarker conception

Biomarkers were understood initially as “cellular, biochemical, or molecular
alterations that are measurable in biological media such as human tissues,
cells, or fluids.”1 The concept of a biomarker proposed in 2001 described a
physical, functional, or biochemical characteristic that can be measured
quantitatively and can serve as an indicator of physiological or pathological
processes or pharmacological responses to therapeutic intervention. This
definition implies the dependence of biomarker values on physiological or
pathological changes.

Biomarkers are becoming a mandatory part of clinical studies, allowing
investigation of biologically active substances’mechanisms, forming groups of
risk associated with a disease.
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1.2.1.1 Molecular vibrational absorption spectra

Vibrations of a diatomic molecule
A molecule’s stability is connected with

• a repulsive force among nuclei and electron clouds of different atoms,
which form a molecule;

• the attractive force between an atom nucleus and electrons.

The equilibrium distance R0 of atoms’ nuclei in a molecule is determined by
the equality of the repulsive and attractive forces. Accordingly, modeling the
interatomic interaction by the force of elasticity, the molecule can be
represented as a harmonic oscillator.

The Schrödinger equation for a diatomic molecule in the approximation
of a 1D harmonic oscillator has the following solution:

Evibr ¼ ћv
�
nþ 1

2

�
, (1.8)

where n ¼ 1,2, : : : , n is the vibrational quantum number. Thus, in the
framework of this model, the spectrum of vibrational transitions is
equidistant. An anharmonicity accounting is usually described by the Morse
potential:79,80

VðRÞ ¼ Ed ½1� expfaðR0 � RÞg�2, (1.9)

where a is the constant, specific for a molecule, R is the distance between
atoms’ nuclei, and Ed is the energy of dissociation.

The vibrational energy levels are described by the expression

Evibr ¼ ћve

�
nþ 1

2

�
� ћve · Xe

�
nþ 1

2

�
2
þ : : : , (1.10)

where Xe . 0 is the constant characterizing anharmonicity, i.e., a measure of
the deviation of the actual potential function VðRÞ from the potential function
of the anharmonic oscillator, ve ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ed∕m

p
, where m ¼ m1m2

m1þm2
is the reduced

molecule mass, and m1 and m2 are the atom’s masses.
The selection rules for transitions in the anharmonic oscillator are

Dn ¼ �1; � 2; � 3, : : : :

Vibrations of polyatomic molecules
A polyatomic molecule containing N atoms has 3N degrees of freedom,

including 3 degrees of freedom for translational motion (three spatial
coordinates) and 3 degrees of freedom for rotation of a nonlinear molecule
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processes. The external optical field induces a dipole moment m, which varies
with the frequency of the optical field vo:

m ¼ a · F0 cosðnotÞ: (1.30)

Here, F 0 is the amplitude of the external optical field, and a is the
polarizability of the molecule. The polarizability varies during the vibrational
motions of the molecule. Let the fundamental vibration frequencies of the
molecule be nk, k ¼ 1,2, : : : , M. Then, a variation of the polarizability with
vibrations of the molecule can be expressed by expanding components of the a
in a Taylor series concerning the normal coordinates of vibration Qk, as
follows:92

a ¼ a0 þ
X
k

�
­b

­Qk

�
Qk þ : : : (1.31)

where a0 is the polarizability at the zero displacements. Thus, during
harmonic vibrational motions of the molecule,

a ¼ a0 þ
XM
k¼1

ak cosðnktþ fkÞ þ : : : : (1.32)

The induced dipole moment is

Figure 1.12 Absorption of light molecules of atmospheric air in the THz spectral range.
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1.2.4 Molecular imaging

Molecular imaging provides a spatial-temporal visualization and characteri-
zation of biomolecules in tissue.99

In vivo molecular imaging is associated with identifying and quantifying the
molecular marker profile in tissue without a surgical biopsy. While anatomical
imaging is focused on diagnosis, surgical guidance, and monitoring of
treatment, molecular imaging provides the ability for screening and early
diagnosis, personalization of therapy, and earlier treatment follow-up.100

There are labeled and label-free variants of molecular imaging. Most non-
optical molecular imaging modalities use labels or contrast agents (see
Fig. 1.20). They include molecular targeting substances such as antibodies,
peptides, nucleic acids, and labels for readout by an imaging modality.100

Figure 1.19 Comparison of steady-state and time-resolved fluorescence spectroscopy:
(a) fluorescence spectra of various analytes, (b) their fluorescence irradiation intensity for
steady-state pumping (marked by the horizontal black shaded box), and (c) time-resolved
fluorescence irradiation intensity for pulse pumping (marked by the vertical black shaded
box)96 (reprinted under license of Springer Nature, License Number 4701911058954).

Figure 1.20 Contrast agents used for molecular imaging100 (reprinted under Elsevier’s
license, License Number 4694920914851).
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1.3 Basics of Machine Learning

The first step in machine learning (ML) was made by Alan Turing in 1950 by
proposing three different strategies, which might achieve a “thinking
machine” or artificial intelligence (AI).102

The first strategy is to develop AI by manually programming a
computer.103 This idea was transformed into modern expert or rule-based
systems. The main drawback of such systems is the need for experts to develop
and maintain them. They are not flexible, and there is a problem with
contractions in the rules.

Another strategy is ab initio ML.103 This approach teaches a computer,
which consists of analyzing positive and negative data samples with rewards
and punishments. If an expert provides links among samples and possible
classes, then datasets are called labeled. A part of the latter forms a training set.
The rest of the labeled samples, which were not used in teaching, form a testing
set used to validate results. This idea leads to a supervised learning approach.

It started with the invention of a human brain cell prototype called
“perceptron” in 1957 by Frank Rosenblatt.104 Perceptron was initially designed
as a tool for image recognition and was a kind of associative link between input
stimuli (xi) and the necessary response (yÞ at the output (Fig 1.22).105 Here, vi
are weight coefficients. The teaching consisted of adjustments to the weight
coefficients to make the proper conclusion depending on input signals. This
procedure can also be considered “highlighting” an object feature vector’s
particular coordinates to increase the distance between feature vectors
belonging to various states. This branch of machine learning has recently been
developed in the form of deep learning (DL).

There are four major branches of ML (see Fig. 1.23). In supervised ML, a
trained algorithm can classify new data.64 Unsupervised ML algorithms allow
us to make conclusions about the presence of possible classes with unknown
origins in unlabeled data. Semi-supervised learning combines supervised and
unsupervised learning, which uses relatively small amounts of labeled data
and unlabeled data for training.106 It requires a lot of data to process, so a way
to apply semi-supervised learning in biomedicine is still under discussion. The

Figure 1.22 Perceptron model by Minsky and Papert (1969).
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Chapter 2

Laser-based Molecular
Data-Acquisition
Technologies

Introduction

A “gold standard” for the verification of many diseases is histopathology
analysis of a biopsy sample. A biopsy is the extraction of cells or tissues for
examination.1 The latter’s disadvantages are that it is time consuming and
invasive. In cancer detection, there is a high risk of metastasis due to the
cancer cells possible dissimilation through blood or lymph vessels from the
region of surgery.

The term “optical biopsy” has entered into common usage in the field of
biomedical optics. This term has internal inconsistency because “biopsy”
refers specifically to tissue removal, whereas the implication of “optical” is
that tissue is not removed. Regardless, “optical biopsy” is commonly
understood as optical measurements, often a kind of spectroscopy, to
noninvasively (or minimally invasively) perform in vivo and real-time
diagnosis.2 Depending on an analyzed diagnostic agent, the optical biopsy
is often divided into breath biopsy, liquid biopsy, and tissue biopsy.

Optical biopsy can be used as a diagnostic tool or to reveal specific
(patho-) physiological mechanisms. The latter is connected with the chemical-
based identification of particular compounds. But an individual molecular
compound hardly serves as a biomarker of a specific disease due to low
specificity. Reliable diagnostics is possible through the control of a group
(profile) of molecular biomarkers. Probabilistic discrimination of biomarker
profiles can be conducted by a pattern-recognition approach, which forms the
basis for assessing acceptable diagnostic accuracy. The chemical analytical-
based identification of individual molecular biomarkers is not strictly
necessary in a clinical setting; also, note that the biochemical origin of most
molecular biomarkers is unknown.4
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DN ≥
a

sLðSNÞ
, (2.5)

where a is the total multipass absorbance

a ¼ �ln
�
I
I0

�
, (2.6)

L is the path length, S/N is the signal-to-noise ratio, and s is the absorption
cross-section.

A multipass cell based on confocal mirrors was created.34 A path length of
about 300 m was achieved in a cell with the mirrors spaced 0.5 m apart. The
multipass cell’s sensitivity was tested by measuring the absorption spectra of
CH4, CO, and CO2. The LOD for CH4 was 6 ppmv. Similarly, for CO2 and
CO, the LOD was found as 640 and 320 ppmv, respectively.

The drawback of MPAS that the individual passes of light must be
spatially separated in the absorption cell. It leads to the need for relatively
large mirrors. Also, an overlap of light beams that make different numbers of
passes through the cell causes interference noise in the transmitted light,
limiting sensitivity.37

2.1.4.3 Cavity ring-down spectroscopy

Cavity ring-down spectroscopy (CRDS) tends to provide the highest
sensitivity in terms of absorption based instruments allowing the detection
of molecular components in a gaseous sample with ppb concentrations.37–39

A typical CRDS setup consists of a laser and a high-quality optical
resonator (two or more mirrors with reflectivity R > 99.9%). The principle of
CRDS is illustrated in Fig. 2.6.40 Here, L is the cavity length, and R is the
mirror reflectivity.

The laser beam is reflected many times in the high-quality resonator,
providing an effective path length of several kilometers. Simultaneously, the
laser beam intensity released from the resonator after each pass in the cavity is
decreased in time following the expression

Figure 2.6 The principle of CRDS.40
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first and second harmonics are preferable (Fig. 2.8). The lock-in amplifiers act
by multiplying the detector signal by a reference sinusoid at the frequency of
interest (1f or 2f). Taking into account that

cosðaÞcosðbÞ ¼ 1
2
cosða� bÞ þ 1

2
cosðaþ bÞ, (2.13)

a low-pass filter is applied to isolate this current and eliminate all components
outside of the filter bandwidth.68,69

WMS was mainly used with diode lasers., It can also be performed by
using external modulators in the near-IR.70,71 A tunable diode laser-based
WMS sensor for in situ temperature and water measurements in flames was
presented in Ref. 72. The sensor enables measurements without calibration or
knowledge of the mixture collisional-broadening coefficient.

Modulation spectroscopy is potentially more sensitive than DAS. The
modulation technique provides two main advantages: it measures a difference
signal, which is directly proportional to the species concentration; and it
allows for shifting a measured signal to higher frequencies, thereby offering a
larger signal-to-noise ratio and higher sensitivity.

2.1.4.6 Fourier transform spectroscopy

Fourier transform IR (FTIR) spectroscopy is based on two beams’
interference (Fig. 2.9).

If a moving mirror is shifted with a constant speed, then the signal on a
photodetector is modulated by a sinusoid; each maximum corresponds to the
beam’s optical path difference d equal to kl (k = 0, ±1, ±2,. . . ). The detected
signal intensity for monochromatic optical radiation with a frequency n is
determined by the expression

I0ðdÞ ¼ 0.5IðvÞ
�
1þ cos 2p

d

l

�
¼ 0.5IðvÞð1þ cos2pvdÞ, (2.14)

where I(n) is the optical wave intensity. In most FTIR commercial
spectrometers based on a Michelson interferometer, the mirror moves at a
constant speed V and d = 2Vt. Varied in time, only the term

Figure 2.8 The idea of WMS68 (reprinted under Taylor & Francis’s license, License
Number 4700831059288).
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to a medium dielectric permittivity. These are typically Lorentzian resonances
so that a full dielectric response can be modeled as

εðvÞ ¼ ε` þ
X
i

Dεi
1þ ivti

þ
X
j

f ðvjÞ
ðv2

j � v2Þ � igv
, (2.20)

where ε` is the medium permittivity high-frequency limit, Dε = εs – ε` is the
amplitude of the relaxation component of the total permittivity, εs is the
medium permittivity stationary value, t is a characteristic re-orientation time
for a single dipole in a material, f(vj) is the amplitude of an oscillation
component, and g is its relaxation time.98,99

Time-domain spectroscopy (TDS) is the most frequently used instrumen-
tal realization of spectral analysis of biomedical samples in the THz range.
TDS uses the generation of THz probe pulses by a GaAs antenna pumped by
a repetitive train of femtosecond laser pulses and their synchronous
registration (after interaction with the investigated sample) by the other
GaAs antenna. The GaAs detector is sensitive to the THz wave’s electric field
only at its illumination by the laser pulse. Thus, laser pulses provide the
generation of THz probe pulses and the GaAs detector’s strobing using an

Figure 2.18 The typical blood sample analysis pipeline, from the blood sampling, serum
separation step to the spectrum acquisition.100
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2.3.4 Possible experimental laser molecular imaging methods for
in vivo tissue optical biopsy

2.3.4.1 Multiphoton microscopy

Multiphoton microscopy is based on laser radiation nonlinear multiphoton
absorption by biomolecules. For example, two photons can excite a molecular
transition jointly when the transition energy equals the double energy of
incident photons (i.e., half the wavelength). The nonlinear excitation requires
high power photon flux, typically 1020–1030 photons/(cm2s). To fulfill this
condition, femtosecond pulsed lasers in combination with high-numerical-
aperture focusing lenses are used.

Second-harmonic generation (SHG) is a second-order nonlinear effect,
which appears in noncentrosymmetric structures.127 Collagen molecules form
the triple helix, consisting of three a-chains forming the triple helix (Fig. 2.30).
The amino acid sequence of the triple helix a-chain consists of the repeated
Gly-X-Y motif, where X is, as a rule, proline (Pro), and Y can be any amino
acid, usually, hydroxyproline (Hyp) or hydroxylysine. Therefore, collagen has
no symmetry center, which makes possible its visualization based on SHG

Figure 2.30 Collagen molecule spatial structure.
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Chapter 3

Informative Feature Extraction

Introduction

Laser molecular imaging produces high-dimension data with the structure
dependent on the optical modality, laser type, detection method, kind of
sample, etc.1 Generally, data’s high dimension corresponds to a situation
where the number of initial parameters exceeds by orders of magnitude the
number of hidden independent variables, e.g., when the number of measured
absorption coefficients of a complex gas mixture exceeds by an order or more
the quantity of pure components in the mixture.

The high-dimension data are hard to use for predictive data model
constructionI due to the “curse of dimensionality” problem formulated by R.
Bellman.2 Essentially, when the feature vector’s dimension increases, the
volume of data needed for classifier training grows exponentially. This is
because the difference between two random vectors tends to zero as their
dimension increases according to the central limit theorem.

One of the main goals of feature extraction is to overcome this problem. The
universal approach for this is in decreasing the data dimension. Concrete ways
depend on the data origin. In particular, 2D-3D images can be decomposed into
small geometrical parts with similar properties named textures.3,4 The texture
approach allows one to find a compact description of the initial image.

Molecular spectra can be considered as a degenerate case of molecular
imaging data in a case of a homogeneous medium when we can study only one
“point” to describe the whole sample.

Feature vector dimension reduction includes feature selection and feature
extraction.I The difference between them is only in the ways used to get the
result. This chapter describes these methods in details sufficient for practical
applications. The Python codes for the most useful analytical methods
described in the chapter are presented in the Supplemental Materials.

3.1 Feature Selection

Feature selection is realized in three steps; some of them are optional. The first
step is the feature subset selection (generation), based on either classical
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for feature selection. (The Python code modules #FFS, #BFS, #BP, #GA,
and test examples are available in the Supplemental Materials).

The embedded methods’ main idea is to combine the advantages of filter
and wrapper methods and find the best subset of informative features
automatically through their built-in feature selection methods (see Fig. 3.7).

Examples of embedded methods include least absolute shrinkage selector
operator (LASSO) regularization in linear regression23 and gradient boosting
machine (GBM) over a decision tree.24

Regression models suffer from complexity, which increases overfitting
risk. The solution is a reduction of the magnitude of linear regression
coefficients.

A penalty term proportional to a linear regression coefficients’ absolute
values are added in the LASSO method, so uninformative features
automatically become zeros.

Figure 3.6 A block scheme of the genetic algorithm.22

Figure 3.7 Embedded methods pipeline.
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Chapter 4

Clusterization and Predictive
Model Construction

Introduction

The most crucial step in the machine learning pipeline is related to
experimental data content and semantic analysis to predict new data’s
meaning.

Let’s consider a set of studied objects, which are described by
corresponding feature vectors. The set of these vectors can be presented in
the form of a matrix:

X̂ ¼
�����

x11x12 : : : x1M
: : :

xN1xN2 : : : xNM

�����,
where a line contains an object’s feature vector, and a column
f j ¼ ðx1jx2j : : : xNjÞT contains a component of the feature vector for all
objects.

Possible states (classes) yl to which studied objects belong are described by
a vector of labels:

y ¼

��������
y1
y2
: : :
yN

��������
:

The main assumption of machine learning approach is a compact
distribution of feature vectors of different classes in the feature space.

Function a :X̂ → y is called a predictive model. Estimation of a is a
fundamental task of machine learning algorithms. The predictive model
construction is based on information about data structure and similarity
measure or distance metric between feature vectors. If vector y is preliminarily
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• Point q is directly reachable from point p if p is a core point and the
distance between p and q is less than ε.

• Point q is reachable from point p if there is a route from p and each
point is directly reachable from the previous point of the route (all
route points should be core, except q).

• Outliers o are the points that are not reachable from the core.

• The cluster is formed by the core point, and all points reachable from
the core point. Each cluster contains at least one core point.

• Point p from the cluster is called a dense point if ε is the neighborhood
that is also a part of the same cluster.

DBSCAN algorithm:

1. Choose a random point that is not visited yet.

2. The ε is the chosen neighborhood, and if it contains at least NumP
points, the cluster is started. Otherwise, it is marked as an outlier. This
outlier can be included in a cluster later. The point is a dense one if all
points in the ε neighborhood are in this cluster. Dense points of a
specific cluster form its dense part.

3. This process continues until a dense part of the cluster is found.

4. Another random, unvisited point is selected.

DBSCAN has the following advantages. First, there is no need for
knowledge of the number of clusters. Second, DBSCAN can find clusters of
arbitrary shapes.4,5,6 It can determine noise and outliers.

Figure 4.2 DBSCAN illustration. Dots p are core points, q are reachable points, o is an
outlier, and NumP ¼ 3.
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1.2.1.1 Molecular vibrational absorption spectra

Vibrations of a diatomic molecule
A molecule’s stability is connected with

• a repulsive force among nuclei and electron clouds of different atoms,
which form a molecule;

• the attractive force between an atom nucleus and electrons.

The equilibrium distance R0 of atoms’ nuclei in a molecule is determined by
the equality of the repulsive and attractive forces. Accordingly, modeling the
interatomic interaction by the force of elasticity, the molecule can be
represented as a harmonic oscillator.

The Schrödinger equation for a diatomic molecule in the approximation
of a 1D harmonic oscillator has the following solution:

Evibr ¼ ћv
�
nþ 1

2

�
, (1.8)

where n ¼ 1,2, : : : , n is the vibrational quantum number. Thus, in the
framework of this model, the spectrum of vibrational transitions is
equidistant. An anharmonicity accounting is usually described by the Morse
potential:79,80

VðRÞ ¼ Ed ½1� expfaðR0 � RÞg�2, (1.9)

where a is the constant, specific for a molecule, R is the distance between
atoms’ nuclei, and Ed is the energy of dissociation.

The vibrational energy levels are described by the expression

Evibr ¼ ћve

�
nþ 1

2

�
� ћve · Xe

�
nþ 1

2

�
2
þ : : : , (1.10)

where Xe . 0 is the constant characterizing anharmonicity, i.e., a measure of
the deviation of the actual potential function VðRÞ from the potential function
of the anharmonic oscillator, ve ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ed∕m

p
, where m ¼ m1m2

m1þm2
is the reduced

molecule mass, and m1 and m2 are the atom’s masses.
The selection rules for transitions in the anharmonic oscillator are

Dn ¼ �1; � 2; � 3, : : : :

Vibrations of polyatomic molecules
A polyatomic molecule containing N atoms has 3N degrees of freedom,

including 3 degrees of freedom for translational motion (three spatial
coordinates) and 3 degrees of freedom for rotation of a nonlinear molecule
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• Point q is directly reachable from point p if p is a core point and the
distance between p and q is less than ε.

• Point q is reachable from point p if there is a route from p and each
point is directly reachable from the previous point of the route (all
route points should be core, except q).

• Outliers o are the points that are not reachable from the core.

• The cluster is formed by the core point, and all points reachable from
the core point. Each cluster contains at least one core point.

• Point p from the cluster is called a dense point if ε is the neighborhood
that is also a part of the same cluster.

DBSCAN algorithm:

1. Choose a random point that is not visited yet.

2. The ε is the chosen neighborhood, and if it contains at least NumP
points, the cluster is started. Otherwise, it is marked as an outlier. This
outlier can be included in a cluster later. The point is a dense one if all
points in the ε neighborhood are in this cluster. Dense points of a
specific cluster form its dense part.

3. This process continues until a dense part of the cluster is found.

4. Another random, unvisited point is selected.

DBSCAN has the following advantages. First, there is no need for
knowledge of the number of clusters. Second, DBSCAN can find clusters of
arbitrary shapes.4,5,6 It can determine noise and outliers.

Figure 4.2 DBSCAN illustration. Dots p are core points, q are reachable points, o is an
outlier, and NumP ¼ 3.
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3. Inference. A mask that provides the best noise reduction on the output
is selected.

4.2.12 Improving prediction models; ensemble learning

The main challenge for machine learning is to achieve more accuracy, more
robustness, and generalization. There are several approaches to decrease bias,
variance and improve predictions. You can work with preprocessed data by
removing outliers, adding more positive and negative samples to reduce
unseen data.

The ensemble learning approach is based on combining several machine
learning algorithms into one meta-algorithm. The latter can be done
sequentially and in parallel. Sequential ensemble learning is also known as
boosting machine learning. It assumes that you have several “weak” classifiers
with accuracy better than random guessing. The goal is to construct a
“strong” classifier, which has accuracy significantly better than any “weak”
classifier does. The tactics are as follows: the mislabeled data from the
previous “weak” classifier gets bigger weights, and the subsequent “weak”
classifier is focused on classifying correctly more data. This process repeats
until the desired accuracy is obtained. The SVM, ANN, random forests, and
other techniques can be used as “weak” classifiers in this approach.89–92 An
example of boosting ensemble learning is presented in Fig. 4.19.

The so-called stacking ensemble is a further development of the boosting
approach. Using the same input dataset, you should train many classifiers
(CNNs or else), choose several with the best accuracy, and use them as the
input for another ANN called a meta-learner.93 The Python code modules
#BEL and test examples are available in the Supplemental Materials.

A parallel ensemble learning is presented by bagging and random
forests.94 In this approach, one should generate random samples with
replacement subsets from initial data and train classifiers for each such subset.
A final decision will be carried out using the majority vote procedure or
averaging (see Fig. 4.20).

Figure 4.18 Transfer learning idea.
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A target group of 107 patients with LC and a control group of 29 healthy
volunteers was studied.13 The authors pointed out that the imbalanced sample
numbers in the VOC data set is likely to cause an inappropriate classification.
To complete the sample numbers, they used a synthetic minority over-
sampling technique. An original sample was chosen randomly. Two virtual
samples were interpolated at a random point between the chosen sample and
some two samples nearest to the chosen one (Fig. 5.8).

The authors used a nonlinear SVM with a Gaussian RBF kernelIV and the
leave-one-out CV.IV The maximum accuracy was achieved using 9–10 VOCs.
Still, the lowest number of the corresponding support vectors of the true
positive rate classification was performed using 5 VOCs (CHN, methanol,
CH3CN, isoprene, 1-propanol) in a training set, and that of the true negative
rate reached almost the bottom for 4 VOCs. These results suggested that
5 VOCs are sufficient for 89.0% diagnostic accuracy without overfitting and
that the 95% and 89% correct negative rate-based diagnoses are possible when
using 5 and 4 VOCs, respectively.

Malignant pleural mesothelioma (MPM) is a rare type of pulmonary
cancer mainly caused by asbestos exposure. Thirty-nine patients with
clinically verified MPM were recruited for breath air analysis.36 Breath air
samples were analyzed by the GC-MS tool. Three machine learning
algorithms in combination with a leave-one-out CVIV were applied to create
and evaluate a predictive model (Fig. 5.9).

Ten VOCs, including ketones, alkanes, methylate derivates, hydrocar-
bons, allowed distinguishing MPM patients and healthy controls with the
accuracy presented in the form of the ROC curveI in Fig. 5.10. The naïve
BayesIV expectedly demonstrated the worst accuracy.

19 VOCs were studied in the breath of lung cancer patients with a
confirmed diagnosis (N ¼ 51) and controls (N ¼ 53) using GC-MS and
machine learning.37 Isoprene, acetone, 2-propanol, and nonanal were detected
in the breath of all participants. Thiophene (1.4%), 1-butanol (40.1%), and

Figure 5.8 Oversampling procedure. Two virtual samples were interpolated at a random
point between a chosen random sample and some two samples that are nearest the chosen
one.13
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including propionic acid, ethanol, triethylamine, hexane, toluene, and
dimethylsulfide.66 In any case, the sensors’ signals were partially overlapped
and, strictly speaking, could not be associated with a specific component. The
latter is typical for a pattern recognition approach.

The Mann-Whitney U and Kruskal Wallis tests were used to compare the
medians of groups under study. The statistical significance threshold was
p< 0.05. PCAIV and k-NNIV classification methods were applied to study the
sensors’ signals. The created predictive model was validated using a leave-one-
out CV.IV The mean value of sensitivity was 94.1% (95% confidence interval
[CI], 83.8-98.8%) and the same for specificity was 90.0% (95% CI,
68.3-98.8%).

Differential diagnosis of pulmonary diseases
The IR LPAS and the pattern-recognition-based analysis of the patient

breath air samples’ absorption spectra also can be used for non-invasive
differential express diagnostics of pulmonary diseases.3,4,67

The study involved four groups: patients with broncho-pulmonary
diseases including LC patients (N ¼ 30), COPD patients (N ¼ 40), patients
with pneumonia (N ¼ 40), and a control group of healthy volunteers
(N ¼ 130). All patients had been diagnosed preliminarily by clinical methods.

The sampling procedure is described in Section 5.1.1.2. The samples
were analyzed using the LaserBreeeze gas analyzer.12 All measurements
were carried out at room temperature (20–25°C) and humidity (50–60%). The

Figure 5.17 Absorption spectra of several VOCs, which are typical for broncho-pulmonary
diseases.
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