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1Tissue optics

Chhavi Goenkaa and Linhui Yub,c

aFranklin W Olin College of Engineering, Needham, MA, United States, bMassachusetts
General Hospital, Boston, MA, United States, cHarvard Medical School, Boston, MA,
United States

1.1 Introduction
Tissue optics delves into light’s interaction with tissue, encompassing the propagation
of light within the tissue and the reciprocal modifications that arise between light and
tissue.

Tissue is a collection of cells that perform the same function, often characterized
by similar structures. Tissues can be categorized into different groups based on their
morphology. For instance, epithelial tissues envelop the surfaces of organs, tracts, and
skin, whereas the connective tissue group includes bones, cartilage, and blood. Muscle
tissues, formed by muscle cells, reside within the inner linings of organs and skele-
tal structures. Neural tissue, comprising cellular clusters forming the nervous system,
is another distinct category. Furthermore, tissues are often classified based on their
structural attributes. These varied tissue classifications are significant, as they impact
the manner in which light interacts with them due to variations in their structure and
composition.

Light-tissue interactions are fundamental to understanding and working with
biomedical optics. The turbidity and heterogeneity of biological tissues impact their
interactions with light. Light carries energy and can impact biological tissues, de-
pending on the wavelength of light used. In biomedical optics, the impacts of light
and tissues on each other are exploited for the diagnosis and treatment of diseases and
other physiological conditions.

Therapeutic methods use the changes light can make to tissue. Some examples
are photodynamic therapy, dermatological treatments, and optogenetics. Imaging and
diagnostics use the changes that light undergoes when interacting with biological tis-
sues. Some examples of these include microscopy, pulse oximetry, and functional near
infrared spectroscopy (fNIRS) for brain studies. All the interactions mentioned here
can be used both for spectroscopic and imaging applications.

In this chapter, we are giving an overview of light-tissue interactions and the vari-
ous processes those interactions involve. We will also discuss the optical properties of
tissue and briefly describe the advantages of using light-tissue interactions for biomed-
ical applications.

1.2 Optical properties of tissue
Optical properties of tissues determine how light interacts with them, determining how
a diagnostic or therapeutic application will be achieved. These properties are critical

Biophotonics and Biosensing. https://doi.org/10.1016/B978-0-44-318840-4.00008-5
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4 Biophotonics and Biosensing

to the design of light-based medical devices. Some terminologies that are used to de-
scribe the optical properties of tissues are absorption coefficient, scattering coefficient,
scattering anisotropy, and refractive index. The scattering and absorption coefficients
together form the attenuation coefficient, which is also used to characterize biological
tissues and determine light transport through the tissue. These are described in more
detail in the next section, “Light-tissue interactions.”

Various methods are used to accurately determine the optical properties of tissues.
These methods can be categorized into two main types: indirect methods and direct
methods. As the name suggests, direct methods are not model-dependent but use mea-
surements of unscattered transmission and fluence rate. Both these measurements are
not easy to implement. In the former, the primary challenge is the separation of scat-
tered light from unscattered light. In the latter, detector position can introduce errors in
the measurements (detectors too close to boundaries and sources can introduce mea-
surement errors) [1]. Indirect methods are model-dependent and employ relationships
between optical properties of the tissue and light-tissue interactions, such as absorp-
tion and scattering. Indirect methods can be of two types: noniterative and iterative.
Noniterative methods employ measurements of diffuse reflection and transmission and
determine scattering and absorbing coefficients from those measurements. Sometimes,
other measurements, such as time-of-flight and photoacoustic effects, are also used
as noniterative methods. Iterative direct methods include the very commonly used
Monte-Carlo modeling [2] [3] [4]. These methods also use measurements of transmis-
sion, reflection, absorbance, scattering, but the use of iterative methods gives them the
advantage of error correction, which other methods do not readily have. In this chap-
ter, we will limit ourselves to the discussion of the Monte-Carlo method and describe
it in more detail in Section 1.4.

1.3 Light-tissue interactions
The interaction between light and tissues depends on the optical properties of tissues,
which were discussed in the previous section, and is also related to the properties of
the light that is being used, i.e., wavelength, direction, intensity, etc. For example,
near-infrared wavelengths have a higher penetration depth in human tissue, whereas
ultraviolet wavelengths are more common in fluorescence excitation.

Fig. 1.1 highlights the basic effects of light-tissue interactions: (A) shows the ef-
fects at the air-tissue interface: refraction and specular reflection, and (B) shows the
effects when light propagates through tissue: light scattering and absorption, and the
resulting diffuse reflectance and transmission.

1.3.1 Refraction

The change in direction of light propagation as it travels from one medium to another
is called refraction. Refraction depends on the refractive indices of the two media.
Refractive index (RI) is defined as the speed of light in a vacuum divided by the speed
of light in the medium through which light is traveling. In diagnoses, refractive in-
dices can be used for various applications such as differentiating between malignant
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Figure 1.1 Basic effects of light-tissue interactions: (A) At the air-tissue interface: specular
reflection and refraction (where n2 > n1). (B) propagation of light through tissue: absorption,
transmission, and diffuse reflectance.

Figure 1.2 Example Jablonski diagram illustrating the fundamental processes of fluorescence
and phosphorescence. ISC: intersystem crossing; S0: ground state; S1: excited singlet state;
T1: metastable state.

and normal tissue, classification of different types of tissues in the body, to determine
physiological conditions, such as hydration level of tissue. RI values help us under-
stand tissue pathology which is critical to the computation of power and intensity (and
often wavelength) of light required for a certain application. Refraction and reflection
occur due to variations in refractive indices as light travels through different media.
Refraction is governed by Snell’s law:

v1sin(θ1) = v2sin(θ2).

In this equation, v1 and v2 are speeds of light in medium 1 and medium 2, respectively;
θ1 is the angle of incidence of light on medium 2 when entering from medium 1, and
θ2 is the angle of refraction (how much the light bends after entering medium 2).
The refractive index n of a medium is related to speed of light in that medium by the
equation:



2Optical biosensors: from working
principles to detection methods of
label-free devices

Tatevik Chalyana, Heidi Ottevaerea, and Laura Pasquardinib
aBrussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije
Universiteit Brussel, Brussels, Belgium, bIndivenire srl, Trento, Italy

2.1 Biosensors
A biosensor is a complex mingled device providing specific quantitative or qualitative
analytical information on a sample through a biological recognition element that is in
direct contact with a transduction element [1]. It is a manifold system connecting dif-
ferent fields, such as biology, chemistry, optics, electronics, and informatics in a single
device. In 1975 the first commercial biosensor to analyse whole blood glucose content
was reported [2]. Since then, biosensors technology started, with the development of
different components of the whole system, improving the performance and specificity
of biosensors, as well as including new targets for detection. Fig. 2.1 shows the key
components of any biosensing device.

In most of the case to detect the target molecules, i.e., the analyte, the transducer el-
ement is derivatized (activated) with specific molecules, so called ligands or receptors,

Figure 2.1 Key components of a biosensor: The transducer receives a signal from a ligand-
analyte reaction, which is read as an electrical/optical signal in real time.

Biophotonics and Biosensing. https://doi.org/10.1016/B978-0-44-318840-4.00009-7
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Figure 2.6 Representation of the SPP modes. (a) The nature of the modes arising from metal-
dielectric interference. (b) The evanescent fields in the two media.

Now, let us recall the sensing techniques based on plasmonic effects. In any SPR
configuration, the incident light totally reflects from the dielectric-metal surface and
generates an evanescent field penetrating into the metal layer. Under certain angles
or wavelengths, the propagation constant of the evanescent field matches with SPP,
resulting in a resonance coupling of the incident light with SPP. This yields an inten-
sity loss in the output reflected light and the appearance of a characteristic negative
peak (dip) in the intensity profile of the reflected light as a function of the incident
angle. The position of the dip, and consequently of the resonance angle, is correlated
with the refractive index near to the metal surface. Thus a change in the surrounding
environment yielding a change in the refractive index causes the displacement of the
resonance angle, which is measured by the shift of the intensity dip. In particular, us-
ing a metal surface as a layer for ligand molecule immobilization, and flowing a target
solution over that layer, the molecular binding event can be monitored by recording the
angular position of the intensity dip [36]. Numerous commercial products exist based
on the SPR method. The most known and commonly used are the Biacore3 instru-
ments, which are totally automated, so that the analysis and the sensor regeneration
is computer controlled. The sensor chip in Biacore systems, consists of a glass slide
coated with gold permitting to monitor binding events between molecules, ranging
from ions to viruses.

2.2.3 Waveguide based biosensors

Waveguide-based optical biosensors represent a large class of detection mechanisms,
which include a variety of optical structures, such as interferometers, resonators, etc.
The introduction of waveguides by Colladon dates back to 1842, who experimen-
tally showed that due to total internal reflection (TIR), the light can be guided in a
transparent material with a refractive index higher than its surrounding environment
(nsubstrate< ncore >nclad ) [37]. By using waveguides, the light path can be simply
controlled without the necessity of using bulky components, such as mirrors or beam

3 https://www.gelifesciences.com/en/ae/solutions/protein-research/products-and-technologies/spr-systems.

https://www.gelifesciences.com/en/ae/solutions/protein-research/products-and-technologies/spr-systems


Optical biosensors: from working principles to detection methods of label-free devices 25

Figure 2.7 Schematic of a slab waveguide. (a) The total internal reflection takes place in a
wave-guide when the nsubstrate< ncore >nclad condition is satisfied. The propagation direc-
tion is z. (b) The evanescent field penetrates into the cladding layer, thus becoming sensitive to
environmental changes.

splitters (see Fig. 2.7a). Light propagation through waveguides offers excellent pos-
sibilities for sensing. Light propagates through the waveguide according to particular
patterns of the electromagnetic field, called guided modes [38]. In a slab waveguide
the electric component of the guided mode is given by

Ēi(x, z,ω, t) = Ē0
i (x,ω) exp[j (ωt − β̃iz)] , (2.13)

where z is the propagation direction, and x is the direction in which the refractive in-
dex step profile occurs. The field profile Ē0

i and the propagation constant β̃i of mode i
are dependent on the light angular frequency ω, the geometry and the refractive index
n of all the materials (see Fig. 2.7b).

Let us define the effective refractive index ñeffi
of the mode as

β̃i = 2π

λ
ñeff , (2.14)

where λ is the wavelength of the propagating light.
In addition, for a certain combination of these parameters, one can achieve

monomode waveguiding systems that have only one transverse electric (TE) or trans-
verse magnetic (TM) guided-wave.

What is important for sensing is the fact that Ē0
i (x,ω) is not to be strictly confined

to the core layer, but has exponentially decaying tails in the surrounding materials
as well; these are named the evanescent fields. The decay length of the evanescent
field ranges from one tenth of the wavelength to infinity, depending on the geome-
try and materials. Nevertheless, there is a large interaction volume of the evanescent
field with the surrounding materials. This is used in sensing, since each change in
these materials is sensed by the propagating optical modes and can be measured as
a change in their characteristics. In most chemo-optical sensors, the sensing action is
localized in the cladding region. As the evanescent field of the guided mode penetrates
into the cladding, any refractive index change near to the waveguide surface yields a



3Fluorescence microscopy: backbone
of modern biomedical research

Andrey Andreeva, Evgenia V. Azarovab, and Jeremy Delahantyc

aDivision of Biology and Biological Engineering, California Institute of Technology,
Pasadena, CA, United States, bDepartment of Materials Science and Engineering, Johns
Hopkins University, Baltimore, MD, United States, cDepartment of Neuroscience, Johns
Hopkins University School of Medicine, Baltimore, MD, United States

3.1 Fluorescence phenomena: photons in, photons out
Fluorescence microscopy helps us study organic and inorganic substances and biolog-
ical processes. It is essential to understand the phenomena behind the term “fluores-
cence,” the physical process in which photons (also often referred to as light particles
or light waves) are first absorbed and then emitted. Each photon represents the quan-
tum form of electromagnetic radiation. The most common form is known as visible
light, a small portion of the electromagnetic radiation spectrum that the human eye
can detect.

The term itself was first introduced in 1852 by English mathematician Sir George
G. Stokes, even though the phenomenon was first observed in 1845. The compound
used to make the discovery was plant-derived antimalaria chemical quinine (also
used as flavoring in tonic water), an aromatic molecule that could absorb and emit
light. Since this observation, scientists have learned how to synthetically create fluo-
rophores for various purposes, including biomolecular visualization. The absorption
and emission of light are commonly illustrated by the Jablonski diagram (Fig. 3.1).
The diagram has a set of horizontal lines representing various permitted energy levels
of the molecule and a set of arrows that represent the transitions between different
electronic states that occur when a molecule is photochemically activated.

To better understand the physics of fluorescence, consider a fluorescent compound
that has been in its resting ground state (S0). After interaction with the light particles,
our fluorescent compound can absorb the energy from these photons, causing a va-
lence electron to migrate from its resting state to one of the higher energy states (e.g.,
S1, S2). This transition is called “excitation”; as shown on the Jablonski diagram, it
is often represented by the arrow pointing up. When an electron jumps to its higher
energy state, it starts rapidly losing some of the absorbed energy by moving from a
higher to a lower energy state. This process is represented by curved arrows and is
referred to as vibrational relaxation, followed by light emission. The entire process
usually takes on the order of nanoseconds.
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Figure 3.1 Diagram depicting energy levels in a molecule and potential transitions is a useful
tool to conceptualize fluorescence and associated physical phenomena. Molecules have wide
absorption spectra reflected in several excited states. Similarly, the system can relax to ground
state by emission from several different states. Vibrational relaxation is one of the types of
energy losses that lead to the emission spectrum being more “red-shifted” (photons with less
energy) than absorption spectrum. Adapted from [1].

3.1.1 Multiplexity through fluorescence

Various fluorophores absorb and emit light at different wavelengths, allowing us to
differentiate multiple objects of study. For example, we can use fluorescence to inves-
tigate protein complexes by labeling subunits within the complex with nonidentical
fluorescent molecules [2]. Specificity of fluorescence allows us to visualize and an-
alyze several targets in the same experiments. However, to achieve that easily, the
fluorophores have to be “spectrally separated,” that is, their excitation and/or emission
spectra has to be sufficiently different. Due to spectral overlap between fluorophores,
we can usually separate up to 3 fluorophores using conventional optics and without
computational processing. Algorithms of spectral unmixing [3] [4] allow separation
of up to seven fluorophores, some of which might have significant overlap in spectra.

Unmixing several fluorophores is limited by the ability to resolve different spec-
tral “bins,” for example, through resolution of spectral linear detectors. The amount
of signal in each “bin,” more specifically, signal-to-noise ratio, defines bleed-through
between channels after unmixing. Thus hyperspectral imaging, especially when un-
mixing more than 3 (usually) channels, might require a high amount of signal to be
collected, and concomitantly, longer exposure time, slower imaging, or higher laser
power. Hyperspectral imaging might be more useful not for live imaging, but for mul-
titarget quantification for diagnostics; this will be discussed in a later section.
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1. Chemical covalent bonds between molecule and fluorophore
2. “Click” chemistry between fluorescent molecule and target molecule
3. Intermediate genetically-encoded tags, such as biotin-avidin system
4. Direct fusion of genetically-encoded fluorescent protein with protein of interest
5. Tagging specific toxins, such as phalloidin for labeling actin

Using fluorophores of different spectral properties (“colors”), one can tag several
molecules in the same context and measure their relative characteristics. Ideally, we
want to only use orthogonal labels, that is, fluorophores with significant spectral sep-
aration. Hyperspectral unmixing (discussed earlier) allows an increase in the number
of targets that can be recorded simultaneously. Here we review several examples of
using specificity of fluorescence for biomedical applications.

3.3.1 Genomic analysis

Monumental effort has been made to finish sequencing of the human genome. Flu-
orescence played an important role in completing this task. Following the Sanger
sequencing approach [40,41], which requires radio isotopes, a similar method based
on automatic detection of nucleotide bases using fluorescence was developed in 1984
[42]. In this approach, DNA is synthesized using a mixture of normal bases and
synthesis-terminating nucleotides labeled with fluorophores. Each such terminating
nucleotide (dideoxynucleotides or ddNTPs) carries different fluorophores, for exam-
ple, adenine (A) is labeled with fluorescein, thymidine (T) is labeled with Texas-
Red, and so on. DNA molecules are synthesized using polymerase, and whenever
a synthesis-terminating base is incorporated, it truncates a given copy of DNA. Thus,
the reaction solution ends with an assortment of truncated DNA molecules terminated
with a specific fluorophore (Fig. 3.5). That fluorophore “color” allows detection of
the terminated base, and separation of DNA molecules on gel electrophoresis allows
reconstruction of the sequence.

Application of fluorescence for DNA sequencing improved specificity and effi-
ciency, it also removed requirements for radioactive compounds, and allowed au-
tomation of sequencing. A variation of Sanger sequencing is still used in practice,
for example, to verify sequences of short DNA fragments; however, whole-genome
sequencing progressed to next-generation sequencing (NGS), which also relies on flu-
orescence detection [45].

3.3.2 Spatial-omics: imaging meets diagnostics

Though genome sequencing and genetic testing are crucial tools for clinical work, we
also need to be able to quantify expression of the genes of interest. After effectively
solving the technical problem of “genome” sequencing, modern diagnostics are now
focusing on problems of “exome” characterization, or distribution of RNA molecules
within tissues (transcriptome). Out of several approaches, two tools for spatially-
resolved transcriptomics are leading [46]. First, is a fluorescent in situ hybridization
[47,48], which labels RNA molecules of interest with a fluorophore-labeled probe
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Figure 3.5 Applications of fluorescence for clinical diagnostics. (A) Specificity of fluores-
cence allows labeling of individual DNA bases for precise sequencing [43]; (B) Microscopic
imaging of tissues labeled with set of probes targeting expression of specific transcripts
(mRNA) allows characterization of tissue state with sub-cellular resolution in zebrafish em-
bryo [44].
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4.1 Introduction
Since the discovery of the Raman effect in 1928 Raman spectroscopy has become
a powerful tool that provides information about the molecular structure and compo-
sition of materials with numerous fields of application. The Raman effect is a type
of inelastic light scattering by molecules. It was predicted by A. Smekal in 1923 [1]
and was observed experimentally in liquids by C.V. Raman and K.S. Krishnan [2].
G.S. Landsberg and L.I. Mandelstam observed it in quartz crystal [3].

The Raman spectrum contains unique fingerprint-like features that allow the identi-
fication and characterization of different molecular species. One of the key advantages
of Raman spectroscopy is its nondestructive nature, which makes it suitable for the
analysis of delicate or sensitive samples. Unlike other techniques, such as infrared
spectroscopy, Raman spectroscopy does not require sample preparation that could al-
ter the sample’s properties. Additionally, Raman spectroscopy can be performed in
a variety of sample environments, including gases, liquids, and solids, making it a
versatile technique for studying a wide range of materials.

Advances in instrumentation have expanded the capabilities of Raman spec-
troscopy. The invention of laser, the introduction of sensitive charge-coupled devices
for the detection of scattered light and filters for the rejection of elastically scattered
light have made Raman spectroscopy a widespread laboratory technique. The de-
velopment of confocal Raman spectroscopy has enabled high-resolution imaging of
samples and has allowed obtaining spatially resolved chemical information. This has
found applications in material science [4,5], pharmaceutics [6–9] as well as in bio-
logical sciences, where Raman imaging can be used for cellular imaging [10,11] and
studying tissue composition [12,13].

Another important development in Raman spectroscopy are the techniques known
as surface-enhanced Raman spectroscopy (SERS) [14] and tip-enhanced Raman spec-
troscopy (TERS) [15]. SERS relies on the interaction between molecules and metallic
nanostructures, which leads to a significant enhancement of the Raman signal. This
technique has revolutionized the field of Raman spectroscopy by enabling high sen-
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5.1 Introduction
A sensor is an analytical tool that can detect and respond to physical input from its
environment and convert it into a measurable optical or electrical signal. A typical
sensor has three parts: a recognition element, a transducer, and a signal processing
part. Sensors can be used in various fields, such as medicine, environmental monitor-
ing, and biotechnology. Each application has specific requirements for measuring the
analyte, including concentration, precision, sample volume, and time required to com-
plete the probing. Sensor devices can be classified into different groups, depending on
the signal transduction method: electrochemical, acoustic, optical biosensors, etc. In
this chapter, we focus on the latter read-out scheme. Optical sensors measure varia-
tions in light properties, such as polarization, intensity, and wavelength, as the reaction
on biological or chemical interactions [1]. They can be divided into two categories:
label-based and label-free. Label-based optical sensing uses special “labels” to gener-
ate an optical signal, whereas label-free sensing generates the signal directly through
interactions between the analyzed material and the transducer. Optical sensors offer
advantages over other conventional analytical techniques, such as direct detection of
substances in real-time, high specificity, sensitivity, small size, and cost-effectiveness.
Optical sensor miniaturization allows chip-level integration, and lab-on-a-chip devices
can also incorporate other functionalities, such as microfluidics [1].

Nowadays, one of the most widely used and commercialized optical sensors is a
plasmonic device [2], where noble metals, such as gold (Au), silver (Ag), and copper
(Cu), are usually used as plasmonic materials with negative permittivity [2–4]. Gold
is most popular due to its optical properties in the visible to infrared (IR) wavelength
ranges, chemical resistance, and well-developed biofunctionalization procedures [3].
Metals, however, have several disadvantages as sensing materials. Though gold is sta-
ble in the air, other metals, such as silver and copper, can degrade due to oxidation and
moisture [5]. Plasmonic sensors based on metals also have a limited spectral opera-
tion range and suffer from losses at optical frequencies, which can cause heating and
affect the refractive index of the medium under study [6]. In addition, the plasmonic
properties of metals are difficult to tune or adjust [5], and metals, as a rule, are not
cleanroom compatible.
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Figure 5.6 Mie resonance for refractometric sensing. (a) Schematic illustration of electric
and magnetic dipoles in dielectric discs. Adapted with permission from ref. [110]. Copyright
2019, American Chemical Society. (b) dielectric spheres, field profiles, and transmission spec-
trum of a 150 nm Si spherical nanoparticle. Adapted with permission from ref. [8]. Copyright
2021, American Chemical Society. (c) Illustration of Si disc for biosensing and (d) sensitivity
curve. Adapted with permission from ref. [110]. Copyright 2019, American Chemical Society.

tive index. Bulk refractive index sensitivity mostly ranges from ten to several hundred
nm/RIU for these dielectric-based metasurfaces. At the same time, plasmonic sen-
sors typically exhibit one order of magnitude larger bulk sensitivity [3]. We can also
conclude that apart from Si, there are two mainstream materials used for visible and
near-IR wavelengths, namely, titanium oxide and silicon nitride, for their transparency
and relatively high refractive indices.

In this section, we discuss one example of dielectric metasurfaces used for gas de-
tection by the refractometric sensing scheme. Hydrogen gas sensing can be realized
by aluminum-doped zinc oxide (Al:ZnO, AZO) nanotube metasurfaces, as shown in
Fig. 5.7(a) [114]. Hydrogen (H2) is a highly combustible gas with low ignition energy.
A concentration exceeding 4% is hazardous, as hydrogen can easily explode. Since H2
is a tasteless nontoxic gas, it is hard to detect by human senses and requires hydrogen
sensors for safety. Hydrogen gas can be detected by the electrical readout. However,
as higher than 4% concentrations of hydrogen can ignite with a small spark, electrical
detection is used below the 4% concentration. Therefore a low-power optical detection
is desired. The dimensions of each AZO tube are the following: 2000 nm in height and
300 nm in diameter with a wall thickness of 20 nm. The nanotubes are arranged in a
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Figure 5.7 Dielectric metasurfaces for hydrogen gas detection by refractometric sens-
ing. (a) Scanning electron microscope (SEM) images of the fabricated aluminum doped zinc
oxide (AZO) nanotubes with a pitch of 400 nm, diameter of 300 nm, and height of 2 µm. The
wall thickness of nanotubes is approximately 20 nm. (b) Illustration of hydrogen sensing by
reflection spectrum. Adapted with permission from ref. [114]. Copyright 2020, Royal Society
of Chemistry.

square lattice with 400 nm period. Such high aspect ratio nanostructures can be fabri-
cated by the combination of deep ultraviolet (DUV) lithography, dry etch, and atomic
layer deposition (ALD) techniques [115–120].

The underlying principle for hydrogen detection in this metasurface system is a
Fabry-Pérot resonance in tubes when light reflected from the top of the tubes (air-
tube interface), and from the bottom (tube-substrate interface) interact constructively
and destructively, resulting in sinusoidal reflection spectra. The spectral positions of
reflection dips and peaks depend on the height of the layer (tubes) and its effective
refractive index. Being exposed to hydrogen absorbed at the surface of the tubes AZO
slightly changes its refractive indices, depending on the concentration of hydrogen,
which leads to the red-shift of the spectrum as shown in Fig. 5.7(b). The spectral shift
was observed for the thin wall tube structures due to a large surface-to-volume ra-
tio. It is absent for AZO solid pillars. The AZO nanotubes show a spectral shift of
13 nm upon exposure to H2 gas with 4% concentration at room temperature within 10
minutes.

5.3 Fluorescence sensing
Photoluminescence (PL)-based detection techniques have been widely used in chem-
istry, biology, materials science, and medicine to label biomarkers for sensing or a
certain part of biological objects for imaging. However, a weak optical signal from
a single luminophore limits sensitivity, making it a critical problem in the detection
of biomarkers in low concentrations in applications such as DNA sequencing, drug
screening, and early diagnosis [121,122]. To address this challenge, technologies that
amplify fluorescence signals are being pursued to improve sensitivity for such label-
based sensing schemes [123]. One extensively studied approach is the manipulation of
photoluminescence, which has been shown to significantly enhance the PL intensity
when photon emitters are coupled to an optical cavity or when located near the intense
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6.1 Introduction
Can we have devices similar to commercial glucometers and pregnancy testers for di-
agnosing any disease rapidly, accurately, and in point-of-care settings? Yes, we will
have such devices for many diseases in the future, and one of the promising direc-
tions to realize such diagnostic tools is integrated photonics and plasmonic biosensors.
Integrated photonics and plasmonic sensors offer various advantages, such as small
footprints, low detection limits, analyte detection multiplexing, and compatibility with
the CMOS technology. That is why these platforms have gained much attention in re-
cent years for realizing various biophotonics and biosensing applications, including
point-of-care diagnostics.

Currently, health diagnostics require expensive infrastructures, specialized person-
nel, time-consuming procedures, and in many cases, long result times. In low and
middle-income countries, the diagnostics landscape is even more challenging due to a
lack of resources, support personnel, and finances. Therefore there is a critical need for
rapid, cost-effective, easy-to-use, and accurate biosensors globally. A recent world-
wide market insights research report indicates that the global biosensors market is
expected to reach USD 49.6 billion by 2030 [1]. We anticipate that integrated photon-
ics and plasmonic biosensors will be a significant part of the healthcare ecosystem in
the next few years.

This chapter presents an overview of the evanescent field detection-based photonic
and plasmonic biosensors, emphasizing their fundamental principles, architectures,
and applications. We also briefly discuss the crucial components of biosensors, namely
surface functionalization, and microfluidics.

6.2 Biosensor surface functionalization
In an integrated photonic and plasmonic biosensor, analytes attach to the sensing
surface through surface functionalization [2]. This process involves preparing or mod-
ifying the sensor’s surface to allow the analyte to bind in the correct orientation for
improving sensitivity. Additionally, surface functionalization helps to prevent the sen-
sor’s fouling and enables its reusage through regeneration. The process of increasing
selectivity by allowing the sensor to bind the desired analyte while blocking unwanted
substances in the sample is known as antifouling [3]. The surface functionalization

Biophotonics and Biosensing. https://doi.org/10.1016/B978-0-44-318840-4.00014-0
Copyright © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/B978-0-44-318840-4.00014-0


Integrated photonic and plasmonic biosensors 201

Table 6.1 Comparison of major techniques used to track changes in properties of a microcav-
ity as a function of sensing events.

Technique Implementation Pros Cons
Change in the resonant
wavelength

Red dip due to the sensing event

(i) Track the
minimum of the
resonant peak
directly [35]

Simplest
implementation
and real-time.

Ignores absorption
of a sensing event;
signal depends
upon a sensing
event’s location
along the mode
profile; noise
sources, such as
laser intensity
fluctuation and
wavelength
instability

Change in the quality factor
using phase shift cavity ring
down spectroscopy

Send a
sinusoidally
modulated laser
light into the
cavity and
monitor the
phase shift of the
output light as a
function of the
sensing event
[18]

No noise
sources, such
as laser
intensity
fluctuation and
wavelength
instability;
sense both
mode effective
index change
and absorption
due to a
sensing event
[20,36]

The signal
depends upon a
sensing event’s
location along the
mode profile;
implementation is
relatively more
involved
compared to the
resonant
wavelength
tracking

Change in the quality factor Fit the resonant
peak to a
Lorentzian
function, and
then extract the
quality factor
[37]

Sense both
mode effective
index change
and absorption
due to a
sensing event

Nonlinear curve
fitting; fit error
due to the
assumed
Lorentzian
function; signal
depends upon a
sensing event’s
location along the
mode profile;
noise sources,
such as laser
intensity
fluctuation and
wavelength
instability

continued on next page
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Table 6.1 (continued)

Technique Implementation Pros Cons
Change in transfer
characteristics of the cavity

Monitor the
resonant peak
strength [38]

Simpler
implementation
and real-time

Primarily for
absorption
measurements;
signal depends
upon a sensing
event’s location
along the mode
profile; noise
sources, such as
laser intensity
fluctuation and
wavelength
instability

Splitting of the single resonant
peak into a doublet

Fit the doublet to
a two-peak
Lorentzian
function and
extract the two
resonant
wavelengths and
their separation
[39]

Signal
independent of
a sensing
event’s location
along the mode
profile

Nonlinear curve
fitting, primarily
demonstrated for
sizing of solid
particles; fit error
due to the
assumed
Lorentzian
function; noise
sources, such as
laser intensity
fluctuation and
wavelength
instability

trinsic to the cavity material. Active WGM biosensors can probe analytes with their
ultranarrow resonant linewidths and consequently offer highly sensitive and lower
detection limit biosensing mechanisms. Their interrogation systems can be realized
without tunable lasers and, as a result, can be relatively low-cost compared to passive
WGM biosensors [48].

A range of biosensors have been demonstrated using integrated and active WGM
cavities. For example, active microdisk resonators have successfully detected protein
rhS100A4 [48] and Human IgG [49], illustrating their proficiency in protein sensing.
Microtoroid resonators with gain media have demonstrated their potential by detecting
influenza virus in the air [50], offering a promising avenue for airborne virus detection.

6.5.2.3 Fabry-Pérot (FP) cavity biosensors

Integrated FP cavities consist of two mirrors that are generally in the form of polished
surfaces or Bragg reflectors. In contrast to WGM cavities, FP cavities are usually lin-
ear geometry. In FP cavities, integration of fluidics, i.e., sample delivery, is relatively



7Optical fiber-based biosensing:
applications in biology and
medicine

Linhui Yua,b,d, Radhika K. Poduvala,b,d, and Kartikeya Muraric
aMassachusetts General Hospital, Boston, MA, United States, bHarvard Medical School,
Boston, MA, United States, cUniversity of Calgary, Calgary, AB, Canada

7.1 Introduction
Optical biosensing is a powerful technique that uses the modulation of properties of
light (intensity, wavelength, phase, polarization, etc.) to measure biomarkers. Endoge-
nous properties of biological tissue, e.g., scattering, absorption, birefringence, etc., are
rich in valuable structural and functional information, which can be measured by opti-
cal sensing. Moreover, researchers can engineer optical solutions with highly specific
contrast enhancements to target a wider range of biomarkers, making optical sensing
an even more versatile tool for biomedical research.

Optical biosensing has been demonstrated and explored as a potential tool in vari-
ous clinical settings, including intraoperative guidance, vital sign monitoring, disease
diagnosis, and treatment monitoring. Additionally, it is a valuable technique in basic
research, enabling the investigation of biological processes and disease mechanisms
across biological models, such as animal models, cell and tissue cultures, organoids,
and various body fluid samples, e.g., blood, saliva, and urine.

When using light for biomedical sensing, particularly in in-vivo applications, there
are two major challenges: i) to overcome tissue scattering, which restricts the depth of
penetration, and, ii) the difficulty of accessing body parts that are anatomically out of
reach for bulk optics.

Optical fiber sensors provide a robust approach to overcoming challenges in
biomedical optics due to their small footprint and flexibility. Fiber optics-based probes
and endoscopes can access hard-to-reach body parts and cavities, such as the gastroin-
testinal tract, coronary artery, and respiratory system. Small-diameter fiber probes can
be passed through needles and catheters, providing optical access to deep tissue struc-
tures that are otherwise unreachable with minimal invasiveness. Moreover, the optical
fiber sensors can be made biocompatible to interact safely with living tissue without
causing harm or rejection.

This chapter offers an overview of the current state of fiber-based biosensing. Sec-
tion 7.2 reviews the fundamental principles of fiber optics, including single-mode and
multimode fibers, as well as some examples of specialty fibers. Additionally, we dis-

d Equal contribution.
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Figure 7.1 (A) Fiber core composition of step index and graded index fibers and their re-
fractive index profile. (B) Cross-sectional view of some different optical fiber types. Darker
shaded color indicates higher refractive index.

cuss fiber modifications that can enhance illumination and collection in fiber-based
sensing. In Section 7.3, we present an overview of major fiber-optics-based biosensing
technologies, such as diffuse reflectance spectroscopy for measuring intrinsic proper-
ties of biological tissue, fiber photometry and fluorescence fiber probes for measuring
fluorescence markers, and interferometric sensing for sensing pressure and temper-
ature. For each technique, we overview the principles, hardware considerations, and
biosensing parameters that can be measured by optical fiber-based systems. Lastly,
Section 7.4 outlines the future prospects for fiber-based sensors and systems.

7.2 Principles of fiber optic sensors
7.2.1 Optical fibers

Optical fibers transmit light from one end to the other, with light traveling in the core
via total internal reflection. An optical fiber consists of a central core surrounded by
cladding, in which the refractive index of the cladding material is lower than that of
the core.

Optical fibers can be classified into two types based on their core composition:
step-index and graded-index fibers, as shown in Fig. 7.1 (A). Step-index fibers have
a core with a constant refractive index higher than the cladding. Light travels through
the core in a straight path, with reflections occurring at the core-cladding interface.
Graded-index fibers, on the other hand, have a core with a varying refractive index,
which gradually decreases from the center of the core to the cladding. As a result,
light bends smoothly through the fiber instead of being reflected at the core-cladding
boundary. The index profile of graded-index fibers is designed to minimize the differ-
ence in the axial propagation speed of rays in the fiber.
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Figure 7.9 Schematic illustration of two prominent fiber-optic all-ultrasound imaging
schemes. (A) Photoacoustic Imaging, where tissue is illuminated by light from an optical
fiber, which photoacousticaly generates ultrasound energy which is detected by a fiber-optic
ultrasound detector. (B) Optical Ultrasound Imaging, where laser-generated ultrasound pro-
duced at the endface of an optical fiber with a thermoelastic coating is directed at the tissue
of interest, and the ultrasound echoes are detected by a fiber-optic ultrasound detector. MM:
Multimode.

sound waves that can propagate to the tissue of interest, and the ultrasound echoes
can be detected through a second colocated fiber-optic pressure sensor.
Both these fiber-optic imaging schemes use distinct “transmission fibers,” but the
pressure sensors for ultrasound reception have largely similar properties and are
often used in both modalities PAT and optical ultrasound. Both PAT and optical
ultrasound transmitters use laser beams guided through MM fibers with wave-
lengths ranging from visible ∼532 nm to NIR ∼1064 nm [56,79]. The associated
ultrasound detectors however tend to be constructed as fiber-optic Fabry-Perot
interferometers interrogated by NIR light in the 1500 nm to 1600 nm range
[56,93].
Several groups have managed to fabricate fiber-optic ultrasound generators. Tian et
al. reported an ultrasound transmitter fabricated by a focused ion beam technique,
wherein highly absorptive Au nanopores were patterned on the end face of an op-
tical fiber [94]. The miniature optical ultrasound transmitter produced ultrasound
with an amplitude of 2.7 kPa and a -3 dB bandwidth of 7 MHz. Another fiber-optic
transmitter using Au was fabricated by Zou et al. using a composite synthesized
by mixing the AuNPs into PDMS following single-step synthesis protocol, and dip
coated on a multimode fiber with a core diameter of 400 µm to realize a broadband
miniature fiber-optic optical ultrasound transmitter [95]. The generated ultrasound
had an amplitude of 0.64 MPa and a bandwidth of more than 20 MHz, which were
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8.1 Introduction: the need for PoC biosensing
Diagnostic technology is becoming as familiar to consumers as the cell phone, and in
some cases actually is the cell phone. Whether it’s the watch-integrated heart rate and
step count monitors many of us wear 24 hours a day, to the COVID-19 lateral flow
assays (LFAs), which became ubiquitous over the course of the SARS-CoV-2 pan-
demic, people have access to dramatically more information about their health than
previously thought possible. However, despite this avalanche of new consumer-grade
technology, there is still a tremendous amount of diagnostic information not available
at the consumer level, or even in a doctor’s office. To bridge that gap and bring us
ever closer to the “tricorder” idea popularized in Star Trek, researchers in academia
and industry around the globe are developing new technologies suitable for use at the
point-of-care (PoC).

The need (and consumer desire) for at-home and PoC diagnostics has grown as
populations age, infectious diseases emerge, and technology expands. Individuals to-
day are increasingly aware of their personal health status and understand the role
that information has in healthcare. To meet this global need for health monitoring,
there emerged an increased pressure for innovation and technological advancement.
Many large biomedical companies saw this need and began to expand their oper-
ations to include dedicated PoC programs, especially since the 2019 SARS-CoV-2
pandemic. While established entities were refocusing their efforts to bring PoC capa-
bility to product menu, diagnostics became a central focus for a variety of academic
research laboratories that realized their unique approaches and technology (culminat-
ing in intellectual property) could be repurposed (or created de novo) to further our
understanding and the development of technologies that would be deployable at the
PoC.

Beyond the need for PoC systems in the doctor’s office and at home, there are many
other environments where easy-to-use, rapid diagnostic technology has the capacity to
impact lives. For example, the exhaustion of emergency department (ED) personnel,
resources, and time is recognized as a significant healthcare problem. This results
in a situation where the “identified need for emergency services exceeds the avail-
able resources for patient care in the ED, hospital or both,” which is the definition of
overcrowding as provided by the American College of Emergency Physicians [1]. The
overall result of overcrowding, at its most fundamental level, is that the length of hold-
ing admitted patients within the ED when there are no inpatient beds available, known
as “boarding,” is extended, which in turn increases negative patient outcomes [2,3].
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ing waveguide or “multibox” structure with a 15-fold greater sensitivity than silicon
ring resonators with a “traditional” geometry [71,72]. However, the limit of detec-
tion for these devices suffers from lower Q-factors, or broadening of the resonance
peak. Furthermore, the small feature size of the “multibox” structures requires e-beam
lithography to fabricate, so these designs do not scale well for manufacturing.

It has been hypothesized that spiral “ring” resonators would increase the surface
area available for sensing, while maintaining a compact footprint. Xu et al. developed
a spiral cavity resonator and used it to monitor the kinetics of biotin–streptavidin bind-
ing [73]. By lengthening the cavity, they relaxed the critical coupling conditions and
made the spiral resonator less sensitive to fabrication variations. The effective interac-
tion length of 1.27 mm was fit into a 110 by 110 µm footprint, while still achieving a
respectable Q-factor of 20,000. Streptavidin binding to biotin at concentrations as low
as 1.7 nM was demonstrated.

Other groups have pursued the Vernier effect to enhance ring resonator sensitiv-
ity and free-spectral range by cascading multiple ring resonators in-serial between
two bus waveguides [74–76]. Liu et al. have described a ring resonator biosensor
based on three cascaded rings that would yield both high sensitivity and a wide range
of operation [77]. However, this configuration’s practicality for commercialization is
diminished by fabrication variations, which make it difficult for three coupled ring
resonators to share a resonant wavelength as designed. Many other resonant biosensor
structures have also been described, including toroids, beads, and fibers [78,79].

Beyond physical enhancements to ring sensitivity, a critical threshold to commer-
cialization of integrated photonic sensors at the point-of-care is the integration with
microfluidics for sample delivery. One approach to ring resonator biosensor packag-
ing was described by Laplatine et al. in 2018 [80]. Here, a “fan-out” approach was
employed to reduce the amount of silicon used (limiting it to just the area of the rings
themselves, along with germanium photodiodes) as a way to limit per-chip cost, while
providing enough surface area for microfluidic and electronic packaging (Fig. 8.13);
an outstanding demonstration of packaging for an active device. Even simpler and
lower-cost approaches are desirable.

To further simplify and reduce the cost of ring resonator-based biosensors for diag-
nostics, Cognetti et al. developed a method for integrating sensor chips with passive
microfluidics, and demonstrated the use of microring resonators for the detection of
antibodies against SARS-CoV-2 in human samples [81]. Because the plastic micropil-
lar microfluidic card transports fluids being analyzed via capillary flow, no pumps or
power are required. Use of a grain of rice-sized photonic sensor chip also reduces the
per-assay cost. An optical hub was codeveloped with the disposable to allow grating
coupled light input/output and rapid alignment (Fig. 8.14).

8.4.5 Waveguide-enhanced Raman spectroscopy (WERS)

The photonic sensors discussed thus far perform well for the detection of “large”
molecules, such as proteins and oligonucleotides, but their reliance on localized
changes in refractive index makes them less useful for the detection of small molecule
analytes. As an alternative to photonic sensing methods reliant on changes in lo-
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Figure 8.13 Packaging ring resonator biosensors using a lab-scale fan-out process. Panel (a)
shows the steps in the process from individual sensor die resting on a tape-covered glass
slide carrier to the final epoxy-packaged chip with polymer (SU-8), PDMS, and PMMA mi-
crofluidic microchannel. (b) Overall schematic of electrical and microfluidic connections.
(c) Photograph of the final device. Reprinted from reference [80], Copyright (2018), with per-
mission from Elsevier.

cal refractive index, waveguide-enhanced Raman spectroscopy (WERS) enables the
detection of molecules based on their infrared spectroscopic signature [82,83]. This
enables direct detection of targets of interest without recourse to immobilized capture
molecules, such as antibodies or nucleic acids. Analyte concentration with concomi-
tant spectral simplification may be accomplished in WERS via the use of sorbent films
(Fig. 8.15). Though such sorbents have primarily found use in detection of gas-phase
analytes [84], in principle such materials could also be used to enhance detection of
analytes in biofluids. Miniaturized instrumentation for Raman spectroscopy is avail-
able from several manufacturers. Thus while at an early stage, we can anticipate that
advances in this area will enable its use at PoC.

8.4.6 Integration of light sources

Although most resonant optical biosensing work has used expensive bench-top tun-
able laser sources and detectors, there is considerable interest in adapting CMOS-
compatible processes for monolithic integration of a laser, transducer, and detector
into a single chip. Several groups have demonstrated various approaches toward
this goal. Moock et al. described a novel approach for tuning an inexpensive fixed-
wavelength laser to interrogate the resonance of ring resonator arrays [85]. The in-
corporation of triangular SOI ring resonator into the cavity enabled them to isolate
a directional coupler, heating electrode, and sensing trench to each side of the res-
onator. Their method of time-division multiplexing used a fixed-wavelength source
at 1550 nm and a modulated voltage applied to the ring heater electrodes to sweep
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9.1 Technology
The main goal of surgical oncology is to achieve complete resection of cancerous
tissue with minimal iatrogenic injury to surrounding tissue. In practice, this often
presents a formidable challenge to surgeons. This is because it is difficult to dis-
tinguish tumor tissue from surrounding healthy tissue, especially when approaching
tumor margins. There is evidence that increasing the extent of tumor resection substan-
tially improves overall and progression-free survival in oncological surgery. However,
this requires visualization of the tissue at a cellular level. Histopathological analysis
still remains the gold-standard for differential diagnosis, but it has significant lim-
itations intraoperatively, such as tissue sampling errors, interruption of the surgical
workflow, and lack of interaction with pathologists to optimize the selection of the
biopsy sample.

Endomicroscopy is an emerging imaging modality, which enables in vivo and in
situ visualization of the tissue at microscopic level. Recent pilot studies suggest that
this technique may have a role in identifying pathological tissue and improving tumor
resection rates predominantly in neurosurgery and in the gastrointestinal, urological,
and the respiratory tracts. To date, several endomicroscopic imaging systems, based
on different fundamental optical imaging technologies, have been commercialized for
clinical use.

The NVisionVLE platform (NinePoint Medical, USA) was a volumetric laser en-
domicroscopy (VLE) imaging system, which could create in real-time a sequence of
two-dimensional cross-sections, enabling the visualization of tissue microstructures.
This system uses advanced optical coherence tomography (OCT) to capture images
up to 3 mm beneath the tissue surface at a 7 micron resolution, delivering up to 25
times higher resolution than endoscopic ultrasound.

Another endomicroscopic imaging system is the Endocyto (Olympus Medical Sys-
tems, Japan). This is a flexible, contact endoscope with magnification of up to 520x,
which enables real-time in vivo observation of cells and nuclei, assisting tissue char-
acterization at microscopic scale during endoscopic examinations. To observe the
cellular morphology of the superficial mucosal layer, the tissue is stained and the ob-
jective lens of the endocytoscope is brought into contact with the mucosa. Imaging of
the cellular structures is achieved via light scattering. This imaging system has been
incorporated by Olympus into gastroscopic and colonoscopic platforms for in vivo and
in situ lesion assessment, which can facilitate decision-making and allow therapeutic
intervention. Similar, non-commercial systems include a fiber bundle endocytoscope,
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visualize tissue microstructure in situ at the cellular level provides clinicians with
invaluable information for diagnosing diseases and assessing treatment efficacy [27].
However, despite its significant advantages, pCLE image quality remains inherently
limited by the design of its hardware, which relies on an optical fiber bundle. These
bundles consist of tens of thousands of irregularly arranged fibers, each acting as a
single-pixel detector, resulting in images with artifacts, noise, low contrast, and lim-
ited resolution [37–39]. This has led to a growing interest in the development and
application of super-resolution (SR) techniques to enhance the quality and resolution
of pCLE images. This section aims to provide a comprehensive overview of SR meth-
ods applied to pCLE, with a particular focus on deep learning-based approaches.

Super-resolution (SR) techniques have demonstrated significant potential in en-
hancing the image quality of pCLE images [40]. In the context of pCLE, multiframe
image super-resolution (MISR) [20] approaches capitalize on multiple low-resolution
(LR) pCLE images taken at slightly shifted field-of-views, fusing them into a sin-
gle high-resolution (HR) image to augment spatial information and unveil previously
obscured details. Though MISR can potentially provide superior image quality, it
necessitates precise registration of LR images, which can be computationally de-
manding and challenging for real-time applications. Alternatively, single-image super-
resolution (SISR) employs signal processing techniques to produce HR pCLE im-
ages with enhanced details, making it more suitable for real-time purposes compared
to MISR. A notable approach to SISR is exemplar-based super-resolution (EBSR),
which utilizes encoder-decoder deep learning architectures to generate HR images by
learning the correspondence between LR and HR images.

SR dataset generation: To train the EBSR framework, pairs of low-resolution (LR)
and high-resolution (HR) images are required. Owing to the limited availability of
ground truth HR pCLE images, a registration-based mosaicking method [20] is uti-
lized to create HR images. Mosaicking acts as a conventional SR technique, merging
several registered input frames by averaging their temporal data. The produced mo-
saics serve as a source of HR pCLE images. However, since mosaicking generates a
single expansive field-of-view mosaic image from multiple input LR images, it does
not directly supply a corresponding HR image for each LR input. To address this
issue, the mosaic-to-image diffeomorphic spatial transformation derived from the mo-
saicking process is employed to distribute and trim the combined information from
the mosaic back into each input LR image space. These trimmed images are treated
as the ground truth HR pCLE images for EBSR training. Furthermore, to create LR
images that align perfectly with HR images, the fiber positions of HR images and a
combination of additive and multiplicative Gaussian noise are leveraged to produce
well-aligned LR images.

Deep learning for SR: After generating the SR dataset for pCLE, the deep learning
training framework is also crucial. In this section, two training frameworks for the
pCLE SR task are introduced:

• Adversarial training with cycle consistency (ATTC): The framework [38] uses an
adversarial network, which consists of two separate models: a SR network, which
learns to improve the resolution of the images, and a discriminative network, which
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Figure 9.2 The super-resolution of pCLE improved by ATTC [38].

Figure 9.3 The super-resolution of pCLE improved by ZSSR [39].

tries to distinguish images generated by the SR network from the real HR images.
The goal is for the SR network to learn to fool the discriminative network, ulti-
mately leading to the generation of super-resolved images. A cycle consistency
block is added to the adversarial training to impose a consistency between the
HR images and the initial LR images. This is achieved by constraining the super-
resolved image to have similar physical acquisition properties to the initial LR
image. The results improved by ATTC are shown in Fig. 9.2.

• Zero-shot super-resolution (ZSSR): ZSSR techniques have garnered interest due
to their self-supervised nature and independence from ground-truth HR images.
ZSSR pipelines can be tailored for pCLE images by introducing physically mo-
tivated downsampling kernels, which account for the endomicroscope’s irregular
fiber-based sampling pattern and realistic noise patterns. By exploiting the struc-
ture of pCLE videos, this approach can further improve the quality of reconstructed
HR images, showing superior performance in image quality when compared to
baseline methods [39]. The results improved by ZSSR are shown in Fig. 9.3.

Deep learning-based SR methods have significantly advanced the quality of pCLE
images, enhancing their diagnostic potential and clinical interpretability. The meth-
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10.1 Introduction
Humphrey Zeiss (now Carl Zeiss Meditec AG) introduced the first commercial opti-
cal coherence tomography (OCT) system for retinal imaging in 1996 [1]. This initial
commercial offering followed rapid development based on research in the late 1980s
and early 1990s [2–4]. The brisk translation from research to clinical tool attests to
the clear clinical need filled by OCT in ophthalmic imaging. It offered high-resolution
cross-sectional images through the entire thickness of the retina without contacting
the eye. In the intervening years, various incarnations of OCT have been developed
into clinical devices for imaging the anterior segment of the eye [5], coronary [6], and
peripheral artery disease [7], Barrett’s esophagus [8], and ear infections [9]. Commer-
cialized clinical systems have been developed for many medical specialties, including
ophthalmology, cardiovascular, oncology, dermatology, and dental [10,11]. New pre-
clinical prototype systems are being developed for these fields and more, which we
will discuss in the second half of this chapter [12–17].

In this chapter, we first introduce the essential theoretical background needed to
understand how OCT images are formed, as well as the underlying contrast mecha-
nisms of functional extensions of OCT. We then discuss a selection of clinical and
pre-clinical applications of OCT, which we hope will illustrate the vast and diverse
impact that OCT has on many medical specialties.

10.2 Theoretical background
Small changes in tissue refractive index result in backscattering of incident light. This
scattering signal is fundamentally what OCT measures. In an OCT imaging system,
the sample of interest is illuminated with a coherent light source. Light is reflected at
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Figure 10.4 OCT monitoring of diabetic retinopathy (DR). Foveal avascular zone (FAZ) area
and vessel density measurements. Example of a patient with severe non-proliferative diabetic
retinopathy. Images in the left column were taken 12 months prior to images in the right col-
umn. a), c) Superficial retinal slab projection showing automated FAZ area measurements.
Note parafoveal capillary drop out and slight increase in FAZ area over time. b), d) B-scan
showing corresponding segmentation boundaries. e), g) Vessel density map of the deep reti-
nal slab for the same patient and timepoints. Note slight drop in vessel density in the superior
quadrant. f), h) B-scan with corresponding segmentation lines. Figure is reprinted from [60]
with permission from Nadia K. Waheed, MD, MPH and is licensed under CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
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11.1 Introduction
The field of biophotonics in general, and optical microscopy in particular, heavily
relies on signal processing and data analysis to extract or distill information and ul-
timately improve our understanding of the sample under interrogation. Besides the
fundamental imaging physics or the biological properties that are exploited for imag-
ing, these emerging computational methods are essential to all imaging modalities.
In this chapter, we present an overview of well-established and current state-of-the-
art methods, and their representative applications sampled across this broad field.
Furthermore, we also discuss current challenges and limitations, including ethics, in-
terpretability, and privacy issues for datasets and AI tools.

Although biological image data can simply be regarded as N-dimensional data-
points, where N is the number of pixels or voxels in the image, several key properties
deserve special mention, which distinguish biological image data from more general
forms of data, and even imaging data from other fields.

• What’s so special about images? An image is a specific type of data, spatially
organized into an typically 2- or 3-dimensional array. What distinguishes an image
from an unordered data structure with the same dimensionality (i.e., same number
of entries as pixels) is that neighboring entries have a tendency to be uncondition-
ally similar, rendering useful the concept of “locality” and “cropping.”

• Resolution: The resolution of an image is basically the smallest level of detail
that an image covers. Depending on the implementation, the image resolution can
be limited optically (see diffraction limit below) or limited by sampling (e.g., the
available pixel size on the sensor). There are many possible definitions of resolu-
tion, such as the Abbé limit, the two-point criterion, the Sparrow criterion, or the
Rayleigh criterion.

• Field-of-view (FOV) is the area that can be imaged by a microscope in a single
exposure.
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• Space-bandwidth product (SBP) is a measure for the information capacity of an
optical system. This SBP is typically limited for a given system and results from a
fundamental trade-off between resolution and FOV.

• Contrast mechanism: the fundamental process in which light interacts with a
sample, and which gives rises to the imaging signal. Simple white-light mi-
croscopy, for instance, uses scattering and absorption properties of samples; phase
microscopy techniques measure phase contrast based on refractive index (RI) dif-
ferences, whereas other imaging modalities use intensity or fluorescence intensity
or lifetime of fluorescence.

• Signal-to-noise ratio (SNR): as the name suggests, the SNR is the ratio between
what is defined as signal (see contrast mechanisms above) to the unwanted back-
ground noise (see Section 11.2 below).

As such, many image processing and data analysis techniques focus on improving one
or multiple of these properties, with the ultimate goal of extracting new knowledge
about the sample under study.

In the following sections, we will present well-established and state-of-the-art
methods that can improve images via at least one of the criteria. Furthermore, we show
examples of data analysis that can be used to exploit the information content of im-
ages for automated decision-making, based on machine learning. Most of these tools
can be used post-hoc, e.g., for improving image quality, suppress artifacts or extract
meaningful and quantifiable information. However, some other techniques rely on in-
built computation to reconstruct images in the first place. Therefore we will make
our way starting at denoising and resolution enhancement in Sections 11.2 and 11.3,
respectively. Methods of image stitching and registration to enhance FOV and SBP
of images are shown in Section 11.4. Section 11.5 then targets “qualitative image
enhancement” as a stepping stone to quantitative extraction of image information in
Section 11.6. Finally, we discuss ethics in Section 11.7 and end with a summarizing
conclusion.

11.2 Denoising
11.2.1 What is noise?

Due to the stochastic nature of photon arrival times and associated fluctuations in the
intensity of light, the imperfect readout, and electronics, the measured image is usu-
ally corrupted by noise. This noise is widely modeled as an additive white Gaussian
(AWG) noise,

g(x, y) = f (x, y) + n(x, y), (11.1)

where f is the original clean image; g is the measured noisy image; x, y are the spa-
tial coordinates, and n is white Gaussian noise with standard derivation σ . In practice,
σ is usually measured a priori, or estimated by analyzing a flat region on the image.
During the last three decades, a high number of denoising techniques have been de-
veloped. This section is organized as follows: Section 11.2.2 discusses spatial filtering
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Figure 11.3 The four cases of image classification, object detection, segmentation, and
image-to-image translation for different examples. A) Image classification for the example
of tumor classification in H&E histology images of breast tissue (adapted from [103], licensed
under CC-BY-NC-ND 4.0 ©2018, Copyright Elsevier). B) Object detection for the example of
detecting white blood cells in blood smears of COVID patients (adapted from [101], licensed
under CC-BY-NC-ND 4.0 ©2022). C) Image segmentation for the example of segmenting
mucosal crypt glands in H&E histology images of colon tissue (adapted from [104], © 2016
Elsevier B.V. with permission from Elsevier and Copyright Clearance Center). D) Image-
to-image regression for the example for predicting artificial fluorescent markers from phase
microscopy images (adapted from [105], under Elsevier user license with permission from
Elsevier and Copyright Clearance Center).
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12.1 Introduction
Raman spectroscopy is a type of vibrational spectroscopy, which is based on the in-
elastic scattering of light by the sample. The energy of Stokes and anti-Stokes scattered
light is slightly shifted due to the interaction with molecular vibrations, thus such shifts
reveal the vibrational energy levels of the investigated molecules (see Chapter 4 in this
volume and Fig. 12.1A).

The Raman effect was discovered and interpreted in 1928 [1], but its usage in the
biomedical fields only emerged in recent decades due a few technical obstacles, which
made the implementation of Raman spectroscopy difficult and cost ineffective. Major
advances that were necessary for the implementation of Raman instruments were re-
lated to the development of the laser and confocal scanning microscopy in the 1950s

Figure 12.1 Principles of Raman spectroscopy. The energy diagram (A) demonstrates in-
frared absorption energy, Rayleigh scattering process, Stokes Raman scattering, anti-Stokes
Raman scattering, and CARS processes. The simplified sketch of a Stokes Raman measure-
ment system (B) demonstrates necessary components for a typical Raman spectroscopic
instrument.
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Chapter highlights

• Optical coherence tomography (OCT) is a game changer in ophthalmic
care.

• OCT is growing beyond ophthalmology, impacting other medical fields,
including cardiology, gastroenterology, dermatology, otolaryngology,
dentistry, and pulmonary, cancer, and reproductive medicine.

• The advancement of signal and image processing and data analysis
methods is a crucial part of OCT’s growth.

• There is a recent shift in OCT signal/image analysis methods towards AI,
especially deep-learning methods.

• The clinical utility of AI-OCT systems is still limited due to the small size
of the datasets, varying standards and regulations between OCT device
manufacturers, institutions and countries, the limited number of
standardized and sharable datasets and data analysis methods, and ethical
issues of bias and privacy.

Preface
Optical coherence tomography (OCT) is an imaging technique that enables rapid,
noninvasive acquisition of near-cellular-scale resolution, structural cross-sectional and
volumetric images of scattering objects, such as human tissues [1–3]. OCT can also
be extended by hardware and software modification to provide alternative tissue con-
trast and additional information. For example, OCT angiography (OCTA) enables
the visualization of vessels [4], and OCT elastography (OCE) probes the mechani-
cal properties of tissues [5]. Polarization-sensitive OCT enables visualization of the
birefringence properties of tissue, related to its structure and order [6].

Biophotonics and Biosensing. https://doi.org/10.1016/B978-0-44-318840-4.00022-X
Copyright © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/B978-0-44-318840-4.00022-X


AI-driven innovations in signal/image processing and data analysis for OCT in clinical applications 437

validated generative adversarial networks to enhance the resolution, but they struggled
to reproduce realistic speckle noise [28,29]. Yuan et al. built pixel-level registered
pairs of en face low-resolution and high-resolution OCT images based on experi-
mental data and introduced the receptive field block into the generative adversarial
networks to learn the complex mapping relationship between low- and high-resolution
image pairs [109]. It was demonstrated through imaging of phantom and biological
samples that the lateral resolutions were improved at greater imaging depths.

MAS OCT, as mentioned above, has been extended to MAS-Net OCT, a deep-
learning-based multiple aperture synthetic method [110]. This technique required first
modifying the MAS OCT instrument based on the concept introduced by Bo et al.
[107] to be able to collect low- and high-resolution OCT B-scans. Pairs of low-
and denoised high-resolution images are fed into the developed MAS-Net, a GAN
constructed from U-Net with residual dense blocks (RDBs) and a multiscale discrimi-
nator. The authors showed that the MAS-Net OCT method has the intriguing potential
to improve transverse resolution and optimize depth of focus. For example, the authors
showed that the MAS-Net could sharpen/reduce the width of the structure by a factor
of two compared to the original images.

13.3 OCT image segmentation
Segmentation, e.g., labeling of pixels in structural OCT B-scans according to mor-
phology, is a critical component of quantitative analysis, and therefore we devote a
good deal of space to considering it in this chapter. The accurate boundary detection
of tissue layers in cross-sectional OCT images and segmentation of characteristic fea-
tures, e.g., drusen and cysts, which appear in the retina due to age-related macular
degeneration, and border detection in skin tumors, are vitally important aspects of
clinical diagnosis using OCT. Segmentation can be challenging, first and foremost,
because the ever-present speckle may obscure tissue layer boundaries and other mor-
phological features [70]. In addition, it can be challenging due to the inhomogeneity of
the optical contrast within the image. For example, contrast decreases with depth due
to scattering and absorption in tissue [111]. Contrast can be locally lower due to the
presence of image artifacts [112] or blood vessels or surface structures that generate
shadows, masking the structures below. Then, the very presence of pathology, which
is the most interesting aspect for healthcare professionals, makes the segmentation a
more challenging task. There is a huge number of pathologies, and they have different
footprints in OCT images. Fig. 13.5 shows B-scans of healthy and diseased retinas to
help the reader better understand how retinal B-scans can vary according to pathology.

Manual segmentation is the gold standard for OCT images. It requires outlining
structures slice-by-slice, and is thus expensive, tedious, and subject to human error.
Furthermore, as discussed in Section 13.1.3, the widespread availability of OCT in
ophthalmology and an increase in the number of patients with retinal diseases make
it impossible to match the availability of expert humans with the number of scans.
Therefore there is a need for automated segmentation methods to provide accuracy
close to that of expert raters with high consistency. This section discusses the most
recently introduced methods for OCT image segmentation.
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Figure 13.5 A) Examples of annotated OCT images showing the manually annotated bound-
aries generated by an expert (left) and by a computational model (right). B) Examples of
retinal images with pathologies. Image size approx. 6 × 0.7 mm. Panel A was adapted from
[113] with permission from Elsevier. The Age-related macular degeneration image is from
Duke DME/AMD publicly available dataset [114]. Panel B was adapted from [115] with per-
mission from Elsevier.

13.3.1 Retinal layer segmentation

Retinal disease can affect as little as a single layer of this multilayered tissue. There-
fore the segmentation of retinal layers to measure and map layer thickness and reflec-
tivity is a critical task, not least towards identifying sensitive biomarkers of disease
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