Presentation + Paper
11 May 2017 Effect of cryogenic temperature on spectroscopic and laser properties of Er, Yb-doped potassium-lanthanum phosphate glass
Author Affiliations +
Abstract
Glass matrix doped with rare-earth ions is a promising laser active medium for high power laser systems. Due to amorphous structure of glasses the absorption and emission spectra lines are broader in comparison with crystalline materials thus pumping radiation can be absorbed efficiently, moreover much broader gain bandwidth is suitable for generation of ultra-short pulses. Another advantage of the glass matrix is the possibility to fabricate large volume ingots and simultaneously preservation of sufficient optical quality. The lower thermal conductivity of glasses can be compensated by geometry of the active medium for instance shaped into fibres or discs. We present temperature dependence of spectroscopic and laser properties of newly developed Er, Yb - doped potassium-lanthanum phosphate glass, which is appropriate for generation of radiation at 1.53 μm. The sample of Er,Yb:KLaP glassy mixture was cut into disc shape with dimensions of 2.5 mm (thickness) and 5 mm (diameter) and its faces were polished plan-parallelly without being anti-reflection coated. The temperature dependence of the transmission and emission spectra Er,Yb:KLaP together with the fluorescence decay time were measured the temperature range from 80 to 400 K. The fluorescence lifetime of manifold 4I13/2 (upper laser level) prolonged and the intensity of up-conversion radiation decreased with decreasing temperature. The longitudinal excitation of Er,Yb:KLaP was carried out by a fibre-coupled laser diode (pulse duration 2 ms, repetition rate 10 Hz, pump wavelength 969 nm). Laser resonator was hemispherical, with flat pumping mirror (HR @ 1.5 μm) and spherical output coupler (R = 98 % @ 1.5 - 1.6 μm). The Er,Yb:KLaP glass laser properties were investigated in the temperature range 80 - 300 K. The highest slope efficiency with respect to absorbed pumped power was 6.1 % at 80 K. The maximum output of peak amplitude power was 0.71 W at 80 K, i.e. 1.2 times higher than at 300 K. Tunability of laser wavelength at 80 K in range 1528 - 1552 nm was obtained using MgF2 birefringent filter. From our measurement it can be concluded, that spectroscopic and laser properties of newly developed Er,Yb:KLaP glass are slightly temperature dependent.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Richard Švejkar, Jan Šulc, Michal Němec, Helena Jelínková, Karel Nitsch, Antonín Cihlář, Robert Král, Karel Nejezchleb, and Martin Nikl "Effect of cryogenic temperature on spectroscopic and laser properties of Er, Yb-doped potassium-lanthanum phosphate glass", Proc. SPIE 10238, High-Power, High-Energy, and High-Intensity Laser Technology III, 102380V (11 May 2017); https://doi.org/10.1117/12.2264673
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Glasses

Laser spectroscopy

Temperature metrology

Luminescence

Potassium

Semiconductor lasers

Absorption

Back to Top