Paper
28 September 2017 ILT optimization of EUV masks for sub-7nm lithography
Kevin Hooker, Bernd Kuechler, Aram Kazarian, Guangming Xiao, Kevin Lucas
Author Affiliations +
Proceedings Volume 10446, 33rd European Mask and Lithography Conference; 1044604 (2017) https://doi.org/10.1117/12.2279912
Event: 33rd European Mask and Lithography Conference, 2017, Dresden, Germany
Abstract
The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kevin Hooker, Bernd Kuechler, Aram Kazarian, Guangming Xiao, and Kevin Lucas "ILT optimization of EUV masks for sub-7nm lithography", Proc. SPIE 10446, 33rd European Mask and Lithography Conference, 1044604 (28 September 2017); https://doi.org/10.1117/12.2279912
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Extreme ultraviolet

Extreme ultraviolet lithography

Lithography

Photomasks

Optical lithography

Optical proximity correction

Resolution enhancement technologies

Back to Top