Presentation + Paper
10 July 2018 The reformatting advantage: photonics vs. conventional optics!
Author Affiliations +
Abstract
In recent decades, spectroscopic capabilities have been significantly enhanced by new technological developments, in particular spatial reformatting. Spatial reformatting allows multiple functionalities: the observation of a larger area of sky, obtaining the spectra of all spatial elements under the same atmospheric conditions; modification of the shape and size of the field of view; focal-ratio conversion for the optimized coupling between the telescope and the spectrograph; increase in the spatial and spectral resolving power; the observation of multiple objects; homogeneity in the illumination; scrambling of spatial and/or phase induced structure with the instrument, thus improving the system stability; relocation of the exit pupil, especially important for telecentric systems. The impact of reformatting and the breadth of science cases is so great that many alternative methods and technologies have been proposed: image slicers using refractive or reflective solutions; optical fibers with different core sizes and geometries; microlenses used in isolation or combined with fibers and more recently, photonic devices such as Photonic lanterns to produce modal decomposition. In this paper, a comparison between all currently available options is presented, with a detailed analysis of their advantages and limitations and a proposal for a new reformatter combining slicers and photonic devices. This proposal presents the advantages of the other alternatives and additionally offers: minimization of focal-ratio degradation; produces image and modal decomposition; improves the throughput along the spectral range, increases the spectral resolving power and adds the functionality of scrambling. All of these advantages are combined in a system where photonic and astronomical instrumentation capabilities are joined in an innovative solution with many applications, like for example, the Extremely Large Telescope.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ariadna Calcines, Robert J. Harris, Roger Haynes, and Dionne Haynes "The reformatting advantage: photonics vs. conventional optics!", Proc. SPIE 10706, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, 107062G (10 July 2018); https://doi.org/10.1117/12.2312110
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical fibers

Photonics

Back to Top