Paper
13 December 2020 Review and scientific prospects of high-contrast optical stellar interferometry
Author Affiliations +
Abstract
High-contrast optical stellar interferometry generally refers to instruments able to detect circumstellar emission at least a few hundred times fainter than the host star at high-angular resolution (typically within a few λ/D). While such contrast levels have been enabled by classical modal-filtered interferometric instruments such as VLTI/PIONIER, CHARA/FLUOR, and CHARA/MIRC the development of instruments able to filter out the stellar light has significantly pushed this limit, either by nulling interferometry for on-axis observations (e.g., PFN, LBTI, GLINT) or by off-axis classical interferometry with VLTI/GRAVITY. Achieving such high contrast levels at small angular separation was made possible thanks to significant developments in technology (e.g., adaptive optics, integrated optics), data acquisition (e.g., fringe tracking, phase chopping), and data reduction techniques (e.g., nulling self-calibration). In this paper, we review the current status of high-contrast optical stellar interferometry and present its key scientific results. We then present ongoing activities to improve current ground-based interferometric facilities for high-contrast imaging (e.g., Hi-5/VIKING/BIFROST of the ASGARD instrument suite, GRAVITY+) and the scientific milestones that they would be able to achieve. Finally, we discuss the long-term future of high-contrast stellar interferometry and, in particular, ambitious science cases that would be enabled by space interferometry (e.g., LIFE, space-PFI) and large-scale ground-based projects (PFI).
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
D. Defrère, O. Absil, J.-P. Berger, W. C. Danchi, C. Dandumont, F. Eisenhauer, S. Ertel, T. Gardner, A. Glauser, P. Hinz, M. Ireland, J. Kammerer, S. Kraus, L. Labadie, S. Lacour, R. Laugier, J. Loicq, G. Martin, F. Martinache, M. A. Martinod, B. Mennesson, J. Monnier, B. Norris, M. Nowak, J. U. Pott, S. P. Quanz, E. Serabyn, J. Stone, P. Tuthill, and J. Woillez "Review and scientific prospects of high-contrast optical stellar interferometry", Proc. SPIE 11446, Optical and Infrared Interferometry and Imaging VII, 114461J (13 December 2020); https://doi.org/10.1117/12.2561505
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Stellar interferometry

Interferometry

Data acquisition

Nulling interferometry

Adaptive optics

Calibration

Integrated optics

Back to Top