PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Fundamental dynamic processes at the electronic contact interface, such as carrier injection and transport, become pivotal and significantly affect device performance. Time-resolved photoemission electron microscopy (TR-PEEM) with high spatiotemporal resolution provides unprecedented abilities of imaging the electron dynamics at the interface. Here, we implement TR-PEEM to investigate the electron dynamics at a coplanar metallic 1T′-MoTe2/semiconducting 2H-MoTe2 heterojunction. We find the non-equilibrium electrons in the 1 T′-MoTe2 possess higher energy than those in the 2H-MoTe2. The nonequilibrium photoelectrons collapse and relax to the lower energy levels in the order of picoseconds. The photoexcited electrons transfer from 1 T′-MoTe2 to 2H-MoTe2 with at a rate of ~0.8 × 1012 s−1 (as fast as 1.25 ps). These findings contribute to our understanding of the behavior of photoexcited electrons in heterojunctions and the design of in-plane optoelectronic devices.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Aiqin Hu, Xiaolong Xu, Wei Liu, Shengnan Xu, Zhaohang Xue, Bo Han, Shufeng Wang, Peng Gao, Quan Sun, Qihuang Gong, Yu Ye, Guowei Lu, "Relaxation and transfer of photoexcited electrons at a coplanar few-layer 1 T'/2H-MoTe2 heterojunction," Proc. SPIE 11903, Nanophotonics and Micro/Nano Optics VII, 119030Z (9 October 2021); https://doi.org/10.1117/12.2600766