Paper
1 August 1991 Passive-sensor data fusion
Stephan E. Kolitz
Author Affiliations +
Abstract
Problems in multi-sensor data fusion are addressed for passive (angle-only) sensors; the example used is a constellation of IR sensors on satellites in low-earth orbit, viewing up to several hundred ballistic missile targets. The sensor data used in the methodology of the report is 'post-detection,' with targets resolved on single pixels (it is possible for several targets to be resolved on the same pixel). A 'scan' by a sensor is modeled by the formation of a rectangular focal plane image of lit pixels (bits with value 1), representing the presence of at least one target, and unlit pixels (bits with value 0), representing the absence of a target, at a particular time. Approaches and algorithmic solutions are developed which address the following passive sensor data fusion problems: scan-to-scan target association, and association classification. The ultimate objective is to estimate target states, for use in a larger battle management system. Results indicate that successful scan-to-scan target association is feasible at scan rates >=2 Hz, independent of resolution. Sensor-to-sensor target association is difficult at low resolution; even with high-resolution sensors the performance of a standard two-sensor single scan approach is variable and unpredictable, since it is a function of the relative geometry of sensors and targets. A single-scan approach using the Varad algorithm and three sensors is not as sensitive to this relative geometry, but is usable only for high-resolution sensors. Innovative multi-scan and multi-sensor modifications of the three- sensor Varad algorithm are developed which provide excellent performance for a wide range of sensor resolutions. The multi-sensor multi-scan methodology also provides accurate information on the classification of target associations as correct or incorrect. For the scenarios examined with resolution cell sizes ranging from 300 m to 2 km, association errors are less than 5% and essentially no classification errors are made, when sensor data is integrated over a 60 s time period. With higher-resolution sensors, better results are achievable in less time. The results of the data fusion from three or more sensors over such a period of time provide a rich source of information for the estimation of target states. The algorithms are fast (O(n ln n)); for approximately 100 targets, the average processing per scan in the multi-scan three-sensor methodology takes approximately a second of computational time on a Mac II.
© (1991) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Stephan E. Kolitz "Passive-sensor data fusion", Proc. SPIE 1481, Signal and Data Processing of Small Targets 1991, (1 August 1991); https://doi.org/10.1117/12.45666
Lens.org Logo
CITATIONS
Cited by 10 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Detection and tracking algorithms

Data fusion

Data processing

Error analysis

Image resolution

Signal processing

RELATED CONTENT


Back to Top