Abstract
This paper is the culmination of the research effort which was reported on last year while still in-progress. As previously reported, statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by reentering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was demonstrated in dramatic fashion in January 1997 by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This report details reentry survivability estimation methodology, including the specific methodology used by ITT Systems' (formerly Kaman Sciences) 'SURVIVE' model. The major change to the model in the last twelve months has been the increase in the fidelity with which upper- atmospheric aerodynamics has been modeled. This has resulted in an adjustment in the factor relating the amount of kinetic energy loss to the amount of heating entering and reentering body, and also validated and removed the necessity for certain empirically-based adjustments made to the theoretical heating expressions. Comparisons between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and SURVIVE estimates are presented for selected generic upper stage or spacecraft components, a Soyuz launch vehicle second stage, and for a Delta II launch vehicle second stage and its significant components. Significant similarity is demonstrated between the type and dispersion pattern of the recovered debris from the January 1997 Delta II 2nd stage event and the simulation of that reentry and breakup.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Michael L. Fudge "Re-entry survivability and risk", Proc. SPIE 3434, Image Intensifiers and Applications; and Characteristics and Consequences of Space Debris and Near-Earth Objects, (18 November 1998); https://doi.org/10.1117/12.331230
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical spheres

Titanium

Aluminum

Systems modeling

Rockets

Atmospheric modeling

Statistical modeling

RELATED CONTENT

SIRUS spectral signature analysis code
Proceedings of SPIE (September 05 2003)
Algorithms of self-adaptation for atmospheric model designing
Proceedings of SPIE (February 23 2004)
Reentry survivability modeling
Proceedings of SPIE (October 01 1997)

Back to Top