Paper
20 December 2004 Polymer-stabilized liquid crystal lens for electro-optical zoom
Author Affiliations +
Abstract
Recently, we have demonstrated a new approach to fabricate a variable focal lens using polymer-stabilized liquid crystals [1, 2]. The approach is based on curing of a polymer/liquid crystals mixture with a circularly symmetric (e.g. Gaussian) shaped laser beam to induce spatially inhomogeneous polymer network. Applying a uniform voltage to the non-pixilated cell leads to circular-symmetric (lens-like) distribution of refractive index in the cell with plane parallel substrates. In this paper we study and optimize the electro-optical characteristics of such lens by varying the wavelength of the polymerizing laser, temperature regime of the process of polymerization as well as frequency of the lens driving voltage. Obtained results are applied to develop lenses that have no moving components and allow the electro-optical zooming. REFERNCES [1] V.V.Presnyakov, T.V.Galstian, K.E.Asatryan, A.Tork. "Polymer-Stabilized Liquid Crystal for Tunable Microlens Applications", Optics Express, 10, 17, 865-870, 2002. [2] V.V.Presnyakov, T.V.Galstian. "Variable Focal Length Lens Based on Polymer-Stabilized Nematic Liquid Crystals", 19th International Liquid Crystal Conference, Edinburgh, UK, June 30 – July 5, 2002, Book of Abstracts, P754.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vladimir Presnyakov and Tigran Galstian "Polymer-stabilized liquid crystal lens for electro-optical zoom", Proc. SPIE 5577, Photonics North 2004: Optical Components and Devices, (20 December 2004); https://doi.org/10.1117/12.567483
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Liquid crystals

Polymers

Laser beam diagnostics

Zoom lenses

Electro optics

CCD cameras

Electro optic polymers

Back to Top