Paper
17 May 2005 An electrostatic analysis of subthreshold behavior in FINFET
Author Affiliations +
Abstract
This paper investigates the subthreshold behavior of Fin Field Effect Transistor (FINFET) by solving 3D Laplace, and Poisson equations. Based on the potential distribution inside the fin, the appropriate band bending and the change in the band bending (∂ψs) were calculated. Three-dimensional analysis of (∂ψs) the change in the band bending indicates that (∂ψs)is less (by ~ 20% for a channel width (Tfin) of 20 nm) in the middle of the channel compared to that at the Si-SiO2 interface. The decrease in (∂ψs) towards the middle of the channel indicates that the control of the gate decreases towards the middle of the channel. Simulation results show that the S-factor of the device increases as Tfin increases. It is observed that the S-factors calculated from the Laplace and the Poisson equations differ by ~7% for a device with a Tfin = 50 nm. However this difference in S-factor gradually decreases and for smaller channel width devices, the S-factors calculated using Laplace and Poisson equations are the same. A comparison of S-factors obtained from Laplace and Poisson equation shows that the S-factor obtained from Poisson equation agrees very well with the reported experimental results. Thus, the systemic study of subthreshold behavior of FinFET shows that it is most appropriate to determine the S-factor of wider channel devices by solving 3D Poisson equation with appropriate doping concentration.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Balasubramanian Murugan, Rama Venkat, and Samar Saha "An electrostatic analysis of subthreshold behavior in FINFET", Proc. SPIE 5755, Data Analysis and Modeling for Process Control II, (17 May 2005); https://doi.org/10.1117/12.597698
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Oxides

Doping

Field effect transistors

Dielectrics

Germanium

Silicon

Bismuth

Back to Top