Paper
7 September 2011 Time-resolved optical writing on a photosensitive and fluorescent polymer film
Z. Pan, R. Akrobetu, J. Lott, C. Ryan, A. Saini, J. Shan, R. Mu, K. D. Singer, C. Weder, S. H. Morgan
Author Affiliations +
Abstract
Recently a melt-processed blend of 1,4-bis(α-cyano-4-octadecyloxystyryl)-2,5-dimethoxybenzene (C18-RG) dye and polyethylene terephthalate glycol (PETG) has been demonstrated as a promising 3-dimentional optical data storage (ODS) medium 1. ODS in this novel system relies on the laser-induced switching of the aggregation state of the excimerforming fluorescent dye in the inert host polymer. Here we investigate the mechanism and the time scales involved in the writing process. The optical writing was realized by the laser-induced localized excimer to monomer conversion and was characterized by the emergence of the monomer fluorescence. We obtained the dependence of the excimer to monomer conversion on the writing time. Our result indicates that the effective optical writing time is controlled by heating and cooling time of the host polymer and the excimer-to-monomer conversion time. The effective laser writing time, under the specific writing conditions employed in our experiments, is on the order of 10 ms.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Z. Pan, R. Akrobetu, J. Lott, C. Ryan, A. Saini, J. Shan, R. Mu, K. D. Singer, C. Weder, and S. H. Morgan "Time-resolved optical writing on a photosensitive and fluorescent polymer film", Proc. SPIE 8113, Linear and Nonlinear Optics of Organic Materials XI, 811310 (7 September 2011); https://doi.org/10.1117/12.894096
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Luminescence

Excimers

Polymers

Absorption

Excimer lasers

Diffusion

Polymer thin films

Back to Top