We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries.
The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature
CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the
surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the
HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are
evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model.
Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and
surgical guidance.
|