Presentation
26 July 2016 High-resolution spectral and displacement sensing using nano-opto-electro-mechanical systems (Conference Presentation)
Andrea Fiore, Zarko Zobenica, Rob W. van der Heijden, Maurangelo Petruzzella, Francesco Pagliano, Rick Leijssen, Ewold Verhagen, Tian Xia, Leonardo Midolo, YongJin Cho, Frank van Otten
Author Affiliations +
Abstract
Nanophotonic structures with narrow optical resonances, such as high-quality factor photonic crystal cavities, in principle enable spectral sensing with high resolution. This can also result in high-sensitivity displacement and/or acceleration sensing if a part of the cavity is compliant. However, the control of the resonance and its optical read-out are complex and usually not integrated with the sensing part. In this talk we will introduce a novel nano-opto-electromechanical system (NOEMS), where actuation, sensing and read-out are integrated in the same device. It consists of a double-membrane photonic crystal cavity, where the resonant wavelength is tuned by electrostatically controlling the separation between the membranes. The output current signal provides direct information about either the wavelength of the incident light or the cavity resonance. This nanophotonic sensing system can be employed to measure the spectrum of incident light, to determine the wavelength of a laser line with pm-range resolution, or equivalently to measure tiny displacements.
Conference Presentation
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Andrea Fiore, Zarko Zobenica, Rob W. van der Heijden, Maurangelo Petruzzella, Francesco Pagliano, Rick Leijssen, Ewold Verhagen, Tian Xia, Leonardo Midolo, YongJin Cho, and Frank van Otten "High-resolution spectral and displacement sensing using nano-opto-electro-mechanical systems (Conference Presentation)", Proc. SPIE 9884, Nanophotonics VI, 98840D (26 July 2016); https://doi.org/10.1117/12.2227615
Advertisement
Advertisement
KEYWORDS
Sensing systems

Nanophotonics

Photonic crystals

Integrated optics

Spectral resolution

Atomic, molecular, and optical physics

Current controlled current source

Back to Top