Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for vibrational spectroscopy, but is compromised by its low reproducibility, uniformity, biocompatibility, and durability. This is because it depends on “hot spots” for high signal enhancement. Here we report our experimental demonstration of a plasmon-free nanostructure composed of a two-dimensional array of porous carbon nanowires as a SERS substrate for highly sensitive, biocompatible, and reproducible SERS. Specifically, the substrate provides not only high signal enhancement, but also high reproducibility and fluorescence quenching capability. We experimentally demonstrated these excellent properties with various molecules such as rhodamine 6G (R6G), β-lactoglobulin, and glucose.
|