Open Access
12 February 2022 Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution mission: motivation and overview
Kevin France, Brian Fleming, Allison Youngblood, James Mason, Jeremy J. Drake, Ute V. Amerstorfer, Martin Barstow, Vincent Bourrier, Patrick Champey, Luca Fossati, Cynthia S. Froning, James C. Green, Fabien Grisé, Guillaume Gronoff, Timothy Hellickson, Meng Jin, Tommi T. Koskinen, Adam F. Kowalski, Nicholas Kruczek, Jeffrey L. Linsky, Sarah J. Lipscy, Randall L. McEntaffer, David E. McKenzie, Drew M. Miles, Tom Patton, Sabrina Savage, Oswald Siegmund, Constance Spittler, Bryce W. Unruh, Máire Volz
Author Affiliations +
Abstract

The Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission is an astrophysics Small Explorer employing ultraviolet spectroscopy (EUV: 80 to 825 Å and FUV: 1280 to 1650 Å) to explore the high-energy radiation environment in the habitable zones around nearby stars. ESCAPE provides the first comprehensive study of the stellar EUV and coronal mass ejection environments that directly impact the habitability of rocky exoplanets. In a 20-month science mission, ESCAPE will provide the essential stellar characterization to identify exoplanetary systems most conducive to habitability and provide a roadmap for NASA’s future life-finder missions. ESCAPE accomplishes this goal with roughly two-order-of-magnitude gains in EUV efficiency over previous missions. ESCAPE employs a grazing incidence telescope that feeds an EUV and FUV spectrograph. The ESCAPE science instrument builds on previous ultraviolet and x-ray instrumentation, grazing incidence optical systems, and photon-counting ultraviolet detectors used on NASA astrophysics, heliophysics, and planetary science missions. The ESCAPE spacecraft bus is the versatile and high-heritage Ball Aerospace BCP-Small spacecraft. Data archives will be housed at the Mikulski Archive for Space Telescopes.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Kevin France, Brian Fleming, Allison Youngblood, James Mason, Jeremy J. Drake, Ute V. Amerstorfer, Martin Barstow, Vincent Bourrier, Patrick Champey, Luca Fossati, Cynthia S. Froning, James C. Green, Fabien Grisé, Guillaume Gronoff, Timothy Hellickson, Meng Jin, Tommi T. Koskinen, Adam F. Kowalski, Nicholas Kruczek, Jeffrey L. Linsky, Sarah J. Lipscy, Randall L. McEntaffer, David E. McKenzie, Drew M. Miles, Tom Patton, Sabrina Savage, Oswald Siegmund, Constance Spittler, Bryce W. Unruh, and Máire Volz "Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution mission: motivation and overview," Journal of Astronomical Telescopes, Instruments, and Systems 8(1), 014006 (12 February 2022). https://doi.org/10.1117/1.JATIS.8.1.014006
Received: 6 August 2021; Accepted: 14 January 2022; Published: 12 February 2022
Lens.org Logo
CITATIONS
Cited by 14 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Extreme ultraviolet

Stars

Curium

Atmospheric physics

Exoplanets

Planets

Sensors

RELATED CONTENT


Back to Top