Due to beneficial mechanical properties, cast manganese (Mn13) steel is used for premium grade railway turnout frogs worldwide. However, its coarse-grain structure makes common non-destructive testing (NDT) methods for defect detection used in this industry very difficult to apply. Inductive thermography is a NDT method well suited for this problem. Scanning inductive thermography is used to localise surface defects on the running surfaces of turnout frogs. Once localised, we propose additional static measurements to characterise the detected surface defects with respect to crack length, depth and penetration angle. Simulations with ANSYS Multiphysics are conducted to study the influence of different crack geometries as well as the influence of different excitation parameters. Validation measurements on samples with defined crack geometries are conducted. The results of both, simulation and measurements on samples, are used to characterize surface defects on actual manganese turnout frogs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.