Paper
21 July 2004 Design and test of a microfabricated SU-8 optical scanner
Wei-Chih Wang, Reynold R. Panergo
Author Affiliations +
Abstract
The use of SU-8 in recent years has spawned new developments in MEMS technologies due to its low cost and well characterized mechanical and optical properties. SU-8 is a high contrast, negative tone, chemically amplified, epoxy based photoresist. Considered the poor man's LIGA, the resist is recognized for its high aspect ratio (~15:1), great for vertical sidewalls. Designs of ink jets, micro fluidic devices, and optical devices are a few examples that the material has been used for. Written here is the fabrication and test analysis of a MEMS optical scanner. The scanner is a new stage development to the previous microfabricated Si/SiO2 cantilever beam which was fabricated for the purpose of endoscope examination. The current design has improved performance and “ease of use” with the implementation of SU-8 as the foundation to the optical waveguide or scanner. With this new device, larger thicknesses were achieved as compared to the previous method. Fabrication of the SU-8 waveguide was measured to be ~85μm as compared to the silixon oxide method of ~3μm. An overall larger device makes coupling a fiber into the waveguide much easier and increases the amount of light coupled into the beam. The optical scanner consists of a cantilever beam with a U-shaped groove for optical coupling. In this paper, we will discuss the image scanning capabilities of the device.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wei-Chih Wang and Reynold R. Panergo "Design and test of a microfabricated SU-8 optical scanner", Proc. SPIE 5394, Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, (21 July 2004); https://doi.org/10.1117/12.538349
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Waveguides

Microfabrication

Silicon

Optical scanning

Scanners

Image quality

Photoresist materials

Back to Top