This article proposes to deal with noisy and variable size color textures. It also proposes to deal with quantization methods and to see how such methods change final results. The method we use to analyze the robustness of the textures consists of an auto-classification of modified textures. Texture parameters are computed for a set of original texture samples and stored into a database. Such a database is created for each quantization method. Textures from the set of original samples are then modified, eventually quantized and classified according to classes determined from a precomputed database. A classification is considered incorrect if the original texture is not retrieved. This method is tested with 3 textures parameters: auto-correlation matrix, co-occurrence matrix and directional local extrema as well as 3 quantization methods: principal component analysis, color cube slicing and RGB binary space slicing. These two last methods compute only 3 RGB bands but could be extended to more. Our results show that, with or without quantization, autocorrelation matrix parameter is less sensitive to noise and to scaling than the two other tested texture parameters. This implies that autocorrelation matrix should probably be preferred for texture analysis with non controlled condition, typically industrial applications where images could be noisy. Our results also shows that PCA quantization does not change results where the two other quantization methods change them dramatically.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.