Fibre Bragg sensors are a key device in biomedical research for simultaneous measurement of deformations and temperature. The present study shows results from the characterization of dental resin materials with different composition and applications. The results show that all investigated polymer materials demonstrate a temperature rise within the first few seconds after starting activation procedure. The mode of activation and the material composition influence the polymerization shrinkage values.
The aim of the study is to demonstrate the potential of the fibre Braggs grating (FBG) in the measurement of different jaw movements that are performed for patients with occlusal parafunction using occlusal splints. Two silicon plates each 2mm are used, the fibre optic sensor is positioned in the maxillary left first molar region above the point of contact with opposing tooth after pressing the first plate on the model. Then the second silicon plate is pressed. The device has a final thickness of 2 mm. The occlusal splint is installed in the mouth of the patient who underwent different movements on occlusal splint. The maximum frequency bite is monitored. The results demonstrate that the bite shows a difference between grinding and clenching movements. The curves behaviour patterns are presented in order to show these different comparisons. Therefore, it is concluded that the fibre Braggs grating consists in an efficient method for monitoring the mechanical behaviour bite of patients with occlusal splints.
The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.
The aim of this study was to evaluate the behavior of two types of resin cements , conventional dual and dual self adhesive, through in vitro and in situ experiments. For the in vitro assay were selected two resin cements that were handled and dispensed over a mylar strip supported by a glass plate. The Bragg grating sensors were positioned and another portion of cement. was placed, covered by another mylar strip. For the in situ experiment 16 single-rooted teeth were selected who were divided into 2 groups: group 1 - conventional dual resin cement Relyx ARC and group 2 - dual self adhesive resin cement Relyx U200 ( 3M/ESPE ). The teeth were treated and prepared to receive the intracanal posts. Two Bragg grating sensors were recorded and introduced into the root canal at different apical and coronal positions. The results showed that the in vitro experiment presented similar values of polymerization shrinkage that the in situ experiment made in cervical position; whereas Relyx ARC resulted lower values compared to Relyx U200; and cervical position showed higher shrinkage than the apical.
The aim of the study was to evaluate the polymerization shrinkage “in situ” in resin cements inside the root canal during the fixation of glass fiber posts. For cementation teeth were randomly divided into 2 groups according to the resin cement used: Group1 – resin cement dual Relyx ARC (3M/ESPE), and Group 2 – resin cement dual Relyx U200 (3M/ESPE). Before inserting the resin cement into the root canal, two Bragg grating sensors were recorded and pasted in the region without contact with the canal, one at the apical and other at the coronal thirds of the post. The sensors measured the deformation of the resin cements in coronal and apical root thirds to obtain the values in micro-strain (με).
The FBGs (Fibre Bragg Grating) are adequate sensors for measuring strain in biomedical applications. This work
evaluates the efficacy of some products and processes, which are used for the decontamination and sterilization of these
sensors. Fibre optic samples, partially stripped of the primary coating, were contaminated by E. coli and S. aureus and
suffered decontamination processes by autoclave heating, immersion in ethylene oxide, sodium hypochlorite, chloramine
T or peracetic acid and illumination ultra-violet radiation. After each process fibre samples were removed, washed in
sterile saline and placed individually in BHI broth tubes. Tubes that showed turbidity of the BHI broth were considered
positive. The sterilization practices by heating and immersionand avoided the formation of bacteria colonies, whereas
illumination processes were not effective to avoid the bacteria colony growth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.