We report on the synthesis of advanced nanostructured hydroxyapatite thin films onto 3D titanium (Ti) mesh substrates by Pulsed Laser Deposition method. Morphological and structural investigations as well as pull-out tests proved the stoichiometric transfer of crystalline hydroxyapatite (HA) films along with their good adherence. In vivo tests were performed on 12 patients (six with simple Ti mesh, six with Ti mesh biofunctionalized with HA). The tomodensitometry analysis of the cranial control scans evidenced the process of osseogenesis. For four patients with implanted HA/Ti mesh structures, the modification of the value obtained on Hounsfield scale was observed at the level of implant, proving the progress of osseointegration. We conclude that the structures exhibit excellent bonding strength and functionality, and are suitable for neurosurgical applications.
We investigated the morphology of polyethylene films by the Differential Evanescent Light Intensity (DELI) imaging method developed by us previously. The films were prepared by the Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. Rough or smooth organic layers were fabricated with thickness depending on the deposition conditions. We used the DELI imaging method here as a fast, low cost method for surface morphology diagnostics of large areas (i.e., hundreds of mm2) of nano layer polyethylene films.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.