KEYWORDS: Image segmentation, Monte Carlo methods, Prostate, Signal to noise ratio, Algorithm development, Computer simulations, Error analysis, Statistical modeling, Rectum, Fluctuations and noise
We present an algorithm to generate samples from probability distributions on the space of curves. Traditional curve evolution
methods use gradient descent to find a local minimum of a specified energy functional. Here, we view the energy
functional as a negative log probability distribution and sample from it using a Markov chain Monte Carlo (MCMC) algorithm.
We define a proposal distribution by generating smooth perturbations to the normal of the curve, update the curve
using level-set methods, and show how to compute the transition probabilities to ensure that we compute samples from the
posterior. We demonstrate the benefits of sampling methods (such as robustness to local minima, better characterization
of multi-modal distributions, and access to some measures of estimation error) on medical and geophysical applications.
We then use our sampling framework to construct a novel semi-automatic segmentation approach which takes in partial
user segmentations and conditionally simulates the unknown portion of the curve. This allows us to dramatically lower the
estimation variance in low-SNR and ill-posed problems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.