We propose an efficient optical tomography with discretized path integral. We first introduce the primal-dual approach to solve the inverse problem formulated as a constraint optimization problem. Next, we develop efficient formulations for computing Jacobian and Hessian of the cost function of the constraint nonlinear optimization problem. Numerical experiments show that the proposed formulation is faster (23.14±1.32 s) than the previous work with the log-barrier interior point method (91.17±1.48 s) for the Shepp–Logan phantom with a grid size of 24×24, while keeping the quality of the estimation results (root-mean-square error increasing by up to 12%).
We present a framework for optical tomography based on a path integral. Instead of directly solving the radiative transport equations, which have been widely used in optical tomography, we use a path integral that has been developed for rendering participating media based on the volume rendering equation in computer graphics. For a discretized two-dimensional layered grid, we develop an algorithm to estimate the extinction coefficients of each voxel with an interior point method. Numerical simulation results are shown to demonstrate that the proposed method works well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.