Proceedings Article | 27 September 2001
KEYWORDS: Sensors, Thermography, Microbolometers, Image sensors, Micro unmanned aerial vehicles, Staring arrays, Unattended ground sensors, Imaging systems, Acoustics, Target detection
Starting in the early 1990's, uncooled microbolometer thermal imaging sensor technology began to move out of the basic development laboratories of the Honeywell Corporation in Minneapolis and into applied development at several companies which have licensed the basic technology. Now, this technology is addressing military, government, and commercial applications in the real world. Today, thousands of uncooled microbolometer thermal imaging sensors are being produced and sold annually. At the same time, applied research and development on the technology continues at an unabated pace. These research and development efforts have two primary goals: 1) improving sensor performance in terms of increased resolution and greater thermal sensitivity and 2) reducing sensor cost. Success is being achieved in both areas. In this paper we will describe advances in uncooled microbolometer thermal imaging sensor technology as they apply to the modern battlefield and to unattended ground sensor applications in particular. Improvements in sensor performance include: a) reduced size, b) increased spatial resolution, c) increased thermal sensitivity, d) reduced electrical power, and e) reduced weight. For battlefield applications, unattended sensors are used not only in fixed ground locations, but also on a variety of moving platforms, including remotely operated ground vehicles, as well as Micro and Miniature Aerial Vehicles. The use of uncooled microbolometer thermal imaging sensors on these platforms will be discussed, and the results from simulations, of an uncooled microbolometer sensor flying on a Micro Aerial Vehicle will be presented. Finally, we will describe microbolometer technology advancements currently being made or planned at BAE SYSTEMS. Where possible, examples of actual improvements, in the form of real imagery and/or actual performance measurements, will be provided.