Transport and recombination of excess carriers in an InGaAs solar cell are investigated by using time-resolved photoemission spectroscopy. We found that photovoltage rises and decays over 820 ps and 980 ps, respectively, at the pump fluence of 0.16 μJ/cm2. This result shows that charge separation and recombination occur in a close time scale while charge separation is substantially faster than recombination in a GaAs solar cell which we studied in the previous study. This implies that the InGaAs cell suffers from higher non-radiative recombination loss. We also analyze the limiting factor of the temporal resolution for the present technique. The temporal resolution can be improved by employing a light source with a higher photon energy while its benefit is not drastic. Alternative methods for the improvement are discussed. In addition, time-resolved photoluminescence spectroscopy was performed in order to compare the two time-resolved techniques. The photoluminescence decay of a GaAs cell shows a fast decay at a weak photo-injection level, which becomes slower at higher injection levels as observed in previous studies.
We performed optical pump-THz probe spectroscopy on bulk GaAs to investigate the nature of exciton Mott transition. The behavior of excitonic correlation in the proximity of the Mott transition density is elucidated through the resonant excitation of 1s excitons with using a nonlinear terahertz spectroscopy technique. We discuss the anomalous charge carrier dynamics of the metallic phase on the verge of Mott transition that appears only at low temperatures.
We developed methodologies and calibration standards for absolute electroluminescence (EL) measurements for CONTACT-LESS evaluation of various internal properties of multi-junction and arrayed solar cells, such as open-circuit voltages, external and internal radiative efficiencies, and luminescence-coupling efficiency. Several independent calibration methods were compared that used: 1) a calibrated EL imaging system, 2) proximity measurement with a large-area photodiode, 3) an integrating-sphere system, and 4) planar light-emitting diodes with a circular aperture. The comparison clarified the advantages and disadvantages of each method, and showed consistency within 30% uncertainty, resulting in a 7-meV uncertainty in open-circuit voltage measurements.
In order to understand the radiation effects in space-used multi-junction solar cells, we characterized degradations of internal radiative efficiency (ηint i ) in respective subcells in InGaP/GaAs double-junction solar cells after 1-MeV electron irradiations with different electrons fluences (Φ) via absolute electroluminescence (EL) measurements, because ηint i purely represents material-quality change due to radiation damage, independently from cell structures. We analyzed the degradation of ηint i under different Φ and found that the data of ηint i versus Φ in moderate and high Φ regions are very similar and almost independent of subcell materials, while the difference in beginning-of-life qualities of InGaP and GaAs materials causes dominant difference in sub-cell sensitivity to the low radiation damages. Finally, a simple model was proposed to explain the mechanism in degradation of ηint i, and also well explained the degradation behavior in open-circuit voltage for these multi-junction solar cells.
KEYWORDS: Luminescence, Quantum efficiency, Electroluminescence, Solar energy, Solar cells, Multijunction solar cells, Tandem solar cells, Light emitting diodes, External quantum efficiency, Satellites
We developed a straightforward method based on detailed balance relations to analyze individual subcells in multi-junction solar cells via measuring absolute electroluminescence quantum yields. This method was applied to characterization of a InGaP/GaAs/Ge 3-junction solar cell for satellite use. In addition to subcell I-V characteristics and internal luminescence yields, we derived balance sheets of energy and carriers, which revealed respective subcell contributions of radiative and nonradiative recombination losses, junction loss, and luminescence coupling. These results provide important diagnosis and feedback to fabrications. We calculated conversion-efficiency limit and optimized bandgap energy in 2-, 3-, and 4-junction tandem solar cells, including finite values of sub-cell internal luminescence quantum yields to account for realistic material qualities in sub-cells. With reference to the measured internal luminescence quantum yields, the theoretical results provide realistic targets of efficiency limits and improved design principles of practical tandem solar cells.
Intense terahetz (THz) pulses induce a photoluminescence (PL) flashes from undoped GaAs/AlGaAs quantum wells under continuous wave laser excitation. The number of excitons increases 10000-fold from that of the steady state. The THz electric field dependence and the relaxation dynamics of the PL flash intensity suggest that the strong electric field of the THz pulse ionizes trap states during the one-picosecond period of the THz pulse and release carriers existing in a giant reservoir containing many trap states in the AlGaAs layers.
We report methods of fabrication and laser-spectroscopic characterization of mid-IR gain media based on micron size
Cr2+:ZnSe/ZnS powders, as well as Cr2+:ZnSe/ZnS doped fluorocarbon polymer films, and perfluorocarbon liquids. All
samples demonstrated strong mid-IR luminescence over 2000-3000nm spectral range under optical 1700nm excitation.
The random lasing of the doped liquids and polymer films was realized with pump energy density of 100 and 15mJ/cm2,
respectively. Previously we have demonstrated mid-IR electroluminescence of Cr:ZnSe with n-conductivity provided by
thermal diffusion of Al and Zn. However, the formation of conductivity was accompanied by compensation of the Cr2+
optical centers and relatively weak chromium electroluminescence. In this paper we report study of the Cr2+
compensation in the crystals co-doped with donor and acceptor impurities. Optical and electrical characterization of
Cr:ZnSe crystals with Ag, Cu, Al, In, and Zn co-dopants were studied to optimize mid-IR electroluminescens of the Cr2+
ions. The best results were obtained with p-conductive Ag:Cr:ZnSe samples featuring a low 600 Ωcm resistivity. First
mid-IR electroluminescence in presumable p-type Ag:Cr:ZnSe was demonstrated, which could prove valuable for
developing laser diodes that function in this spectral region.
We report a simple method for fabricating transition metal (TM) doped II-VI powders with average size of about 10-
20μm as well as room temperature mid-infrared (2-3 μm) random lasing based on Cr2+-doped ZnSe and ZnS powders
prepared without crystal growth stage under optical intra-shell excitation of chromium. Fabrication of Cr2+-doped ZnSe
and ZnS powders involved two simple stages. At the first stage, pure ZnSe, (ZnS) and CrSe, (CrS) (with a concentration
of Cr2+ ion 2×10-19 cm-3 and 5 × 10-19 cm-3 for ZnSe and ZnS respectively) chemicals with an average grain size of 10μm were uniformly mixed by means of a mechanical shaker. At the second stage the obtained ZnSe/CrSe mixture was sealed into evacuated (~10-4 Torr) quartz ampoule and annealed either at 1200°C for 15 minute, or 1000°C for 3 days. In
the case of ZnS/CrS mixtures the annealing was performed in evacuated quartz ampoule at 1000 °C for 14 days. After
annealing, under 1560 nm excitation, the powders demonstrated room temperature middle-infrared luminescence of Cr2+
similar to Cr2+ emission in bulk ZnSe and ZnS. Moreover, the output-input characteristic clearly demonstrated the
threshold-like behavior of the output signal with the threshold pump energy density of ~44.5 mJ/cm2 ~7.46 mJ/cm2, and 63.6 mJ/cm2 for Cr:ZnSe annealed for 15 min, 3 days, and Cr:ZnS respectively.
Here we report a new method for transition-metal (TM) doped II-VI Quantum Dots (QD) fabrication and first mid-IR (2-3 μm) lasing
at 77K of Cr2+:ZnS QD powder (~ 27 nm grain size). Cr2+:ZnS nanocrystalline dots (NCDs) were prepared using laser ablation. The mid-IR photoluminescence (PL) and lasing were studied. The dependence of PL spectrum profile on pump energy demonstrated a threshold behavior accompanied by the appearance of a sharp stimulated emission band around 2230 nm. The stimulated emission band is shifted to the longer wavelength with respect to the spontaneous emission and corresponds to the peak of the Cr:ZnS gain spectrum. This was also accompanied by a considerable lifetime shortening.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.