The shortwave infrared (SWIR) shows a significantly higher level of contrast between different types of tissues compared to the Vis-NIR. This contrast can be further enhanced by using hyperspectral imaging (HSI). Unlike conventional imaging methods, each HSI pixel contains a full high-resolution spectral signal. Complex computational approaches are required to analyze HSI-measured optical alterations. Many of these approaches including machine learning and deep learning algorithms have been developed in the field of geospatial imaging. We adapted and optimized algorithms used in remote sensing to build an image processing platform IDCube that processes biomedical data and identifies tissues abnormalities in SWIR.
This Conference Presentation, “Noninvasive quantification of cutaneous inflammation with hyperspectral short wave infrared imaging,” was recorded for the Photonics West 2021 Digital Forum.
Thermography and pattern classification techniques are used to classify three different pathologies in veterinary images. Thermographic images of both normal and diseased animals were provided by the Long Island Veterinary Specialists (LIVS). The three pathologies are ACL rupture disease, bone cancer, and feline hyperthyroid. The diagnosis of these diseases usually involves radiology and laboratory tests while the method that we propose uses thermographic images and image analysis techniques and is intended for use as a prescreening tool. Images in each category of pathologies are first filtered by Gabor filters and then various features are extracted and used for classification into normal and abnormal classes. Gabor filters are linear filters that can be characterized by the two parameters wavelength λ and orientation θ. With two different wavelength and five different orientations, a total of ten different filters were studied. Different combinations of camera views, filters, feature vectors, normalization methods, and classification methods, produce different tests that were examined and the sensitivity, specificity and success rate for each test were produced. Using the Gabor features alone, sensitivity, specificity, and overall success rates of 85% for each of the pathologies was achieved.
Under development is a clinical software tool which can be used in the veterinary clinics as a prescreening tool for these pathologies: anterior cruciate ligament (ACL) disease, bone cancer and feline hyperthyroidism. Currently, veterinary clinical practice uses several imaging techniques including radiology, computed tomography (CT), and magnetic resonance imaging (MRI). But, harmful radiation involved during imaging, expensive equipment setup, excessive time consumption and the need for a cooperative patient during imaging, are major drawbacks of these techniques. In veterinary procedures, it is very difficult for animals to remain still for the time periods necessary for standard imaging without resorting to sedation – which creates another set of complexities. Therefore, clinical application software integrated with a thermal imaging system and the algorithms with high sensitivity and specificity for these pathologies, can address the major drawbacks of the existing imaging techniques. A graphical user interface (GUI) has been created to allow ease of use for the clinical technician. The technician inputs an image, enters patient information, and selects the camera view associated with the image and the pathology to be diagnosed. The software will classify the image using an optimized classification algorithm that has been developed through thousands of experiments. Optimal image features are extracted and the feature vector is then used in conjunction with the stored image database for classification. Classification success rates as high as 88% for bone cancer, 75% for ACL and 90% for feline hyperthyroidism have been achieved. The software is currently undergoing preliminary clinical testing.
CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants – a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.
Anterior cruciate ligament (ACL) rupture in canines is a common orthopedic injury in veterinary medicine. Veterinarians use both imaging and non-imaging methods to diagnose the disease. Common imaging methods such as radiography, computed tomography (CT scan) and magnetic resonance imaging (MRI) have some disadvantages: expensive setup, high dose of radiation, and time-consuming. In this paper, we present an alternative diagnostic method based on feature extraction and pattern classification (FEPC) to diagnose abnormal patterns in ACL thermograms. The proposed method was experimented with a total of 30 thermograms for each camera view (anterior, lateral and posterior) including 14 disease and 16 non-disease cases provided from Long Island Veterinary Specialists. The normal and abnormal patterns in thermograms are analyzed in two steps: feature extraction and pattern classification. Texture features based on gray level co-occurrence matrices (GLCM), histogram features and spectral features are extracted from the color normalized thermograms and the computed feature vectors are applied to Nearest Neighbor (NN) classifier, K-Nearest Neighbor (KNN) classifier and Support Vector Machine (SVM) classifier with leave-one-out validation method. The algorithm gives the best classification success rate of 86.67% with a sensitivity of 85.71% and a specificity of 87.5% in ACL rupture detection using NN classifier for the lateral view and Norm-RGB-Lum color normalization method. Our results show that the proposed method has the potential to detect ACL rupture in canines.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.