This study reports on the temperature dependent behavior of absorption bands generated in optical fibers via hydrogen exposure at 800 °C. Hydrogen exposure at 800 °C resulted in the generation of two large absorption bands in the 1-2.5 μm wavelength range at ~1.4 μm and ~2.2 μm. These bands showed temperature dependent behavior when in the temperature range of 20–800 °C such that at higher temperatures the absorption intensity in these two bands was smaller than at room temperature. The temperature dependent behavior was shown to be reversible and repeatable under an array of testing conditions including thermal cycling and long periods of time without hydrogen exposure. The reversibility suggests that no chemical change is taking place while the repeatability suggests that no permanent structural change in the glass is taking place. Although both absorption bands are associated with hydroxyl groups and exhibited similar temperature dependence, variations were observed with respect to time and exposure environment. Therefore, we surmised that the observed behaviors were not exclusive to the hydroxyl bond and/or structural modifications. In this paper, we discuss the possible mechanisms responsible for the observed phenomena and, conversely, the conditions that would be necessary to induce the structural changes that would induce changes in the absorption intensities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.