Shape memory nickel-titanium (NiTi) thin films have demonstrated superior capabilities in microelectromechanical systems and biomedical implants due to its corrosion resistance, large work output per unit mass, radiation resistance, and biocompatibility. The goal of this project is to additively manufacture NiTi thin film devices with micrometer resolution. NiTi colloid inks for 3D printing applications were developed and characterized. NiTi thin films were then printed onto a ceramic substrate using an aerosol jet printer, subsequently, sintering and heat treatment procedures were developed. Damping capability and output power density of the printed NiTi thin films were eventually characterized.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.