Whereas laser weapon systems are foreseen as a new possibility to counter unmanned aerial vehicles (UAVs), a better understanding of the complex phenomena occurring during the interaction of a high-energy laser beam with a flying structure is required to use those new innovative defense devices in an efficient but also a secure way. This paper first presents multiple material characterizations performed on glass fibers-reinforced plastics (GFRP), from which near-infrared spectroscopic data and high-temperature thermodynamic results are later implemented into multiphysics simulations. Numerical outcomes from the models are then compared to experimental recordings arising from laser trials carried out with varying power densities (75, 150 and 300 W/cm2) and with illumination times of several seconds. A very good agreement is shown between temperature data collected during laser experiments and temperature values from computations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.