Prediction of survival period for patients with hepatocellular carcinoma (HCC) provides important information for treatment planning such as radiotherapy. However, the task is known to be challenging due to the similarity of tumor imaging characteristics from patients with different survival periods. In this paper, we propose a survival prediction method using deep learning and radiomic features from CT images with support vector machine (SVM) regression. First, to extract the deep features, the convolutional neural network (CNN) is trained for the task of classifying the patients for 24-month survival. Second, the radiomic features including texture and shape are extracted from the patient images. After concatenating the radiomic features and the deep features, the SVM regressor is trained to predict the survival period of the patients. The experiment was performed on the CT scans of 171 HCC patients with 5-fold cross validation. In the experiments, the proposed method showed an accuracy of 86.5%, a root-mean-squared-error (RMSE) of 11.6, and a Spearman rank coefficient of 0.11. In comparisons with the deep feature-only- and radiomic feature-only regression results, the proposed method showed improved accuracy and RMSE than both, but lower rank coefficient than the radiomic feature-only regression. It can be observed that (1) the deep learning of CT images has a promising potential for predicting the survival period of HCC patients, and (2) the radiomic feature analysis provides useful information to strengthen the power of deep learning-based survival prediction.
Lung cancer is the most common cause of cancer-related death. To diagnose lung cancers in early stages, numerous studies and approaches have been developed for cancer screening with computed tomography (CT) imaging. In recent years, convolutional neural networks (CNN) have become one of the most common and reliable techniques in computer aided detection (CADe) and diagnosis (CADx) by achieving state-of-the-art-level performances for various tasks. In this study, we propose a CNN classification system for false positive reduction of initially detected lung nodule candidates. First, image patches of lung nodule candidates are extracted from CT scans to train a CNN classifier. To reflect the volumetric contextual information of lung nodules to 2D image patch, we propose a weighted average image patch (WAIP) generation by averaging multiple slice images of lung nodule candidates. Moreover, to emphasize central slices of lung nodules, slice images are locally weighted according to Gaussian distribution and averaged to generate the 2D WAIP. With these extracted patches, 2D CNN is trained to achieve the classification of WAIPs of lung nodule candidates into positive and negative labels. We used LUNA 2016 public challenge database to validate the performance of our approach for false positive reduction in lung CT nodule classification. Experiments show our approach improves the classification accuracy of lung nodules compared to the baseline 2D CNN with patches from single slice image.
In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.
In spite of its clinical importance in diagnosis of osteoarthritis, segmentation of cartilage in knee MRI remains a challenging task due to its shape variability and low contrast with surrounding soft tissues and synovial fluid. In this paper, we propose a multi-atlas segmentation of cartilage in knee MRI with sequential atlas registrations and locallyweighted voting (LWV). First, bone is segmented by sequential volume- and object-based registrations and LWV. Second, to overcome the shape variability of cartilage, cartilage is segmented by bone-mask-based registration and LWV. In experiments, the proposed method improved the bone segmentation by reducing misclassified bone region, and enhanced the cartilage segmentation by preventing cartilage leakage into surrounding similar intensity region, with the help of sequential registrations and LWV.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.