Zinc oxide (ZnO) nano-wires have draw people's attention in recent studies. The unique structural and physical
properties offer fascinating potential for future technological applications. The state-of-the-art fabrication process of ZnO
nano-wires is based on vapor-liquid-solid (VLS) method. In this paper, the microwave assisted heating technique is
introduced for the growth of ZnO nanopillar arrays. The microwave grown ZnO nanowires were characterized by fieldemission
scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and photoluminescence
spectroscopy. It was demonstrated that (001) oriented single crystal ZnO nanowires can be grown vertically and
uniformly on a-plane sapphire wafers.
In this paper, a novel all-fiber band pass filter based on a concatenated structure of multimode fiber, single-mode core
mode blocker and a single-mode long period fiber grating was reported. It can simultaneously serves as a band pass
filter and multimode-single-mode converter for interconnection between multimode fiber and single mode fiber
network. The theoretical analysis, designing, fabrication and experiments result were presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.