Bone marrow transplantation became the standard choice for treatment of many leukemias, tumors and metabolic diseases. Understanding the dynamic behavior of bone marrow niches, especially in case of bone marrow transplantation is critical to improve the efficiency of the treatment. Intravital microscopy was demonstrated to be a powerful tool to study physiological structure of bone marrow niche. However, current method of intravital microscopy has difficulty in longitudinal monitoring the same bone marrow niche site due to the invasion of the prior-imaging surgery. In this study, we introduce a method to improve the bone marrow niche imaging process and enable the longitudinal imaging of murine calvarium bone marrow. Mouse model for calvarium bone marrow imaging was made by attaching cover glass window to the calvarium bone. Longitudinal imaging of whole bone marrow engraftment process was carried out to demonstrate the advantage of our mouse model. Qualitative and quantitative analysis were also executed on the image data. The result provided a dynamic and full visualization of the bone marrow engraftment process. The study was expected to provide helpful tool for bone marrow studies and useful information for bone marrow transplantation in future.
Research about the cutaneous burn was separated by assessment of burn depth and development of wound healing therapy. Various in vivo optical techniques were used to determined burn depth and observe the wound healing process. In this paper, we report the usage of multimodal optical coherence tomography system, which containing angiographic and polarization sensitive OCT (PS-OCT) with conventional OCT system, at burn studies. Burn was induced at 4 different degrees by control the attachment time of 75 Celsius degree heated brass rod at dorsal skin of the rat. For the burn depth assessment, we imaged the different burn degrees area. Changes of polarization sensitive signal were providing burn depth information. To see the wound healing process, each wound area imaged at long period. Conventional OCT shows the structural information about the tissue, like layer and hair follicle. Angiographic OCT provides vascular distribution and diameter of blood vessel information and PS-OCT shows birefringence tissue information. Based on the multimodal OCT data, burn depth assessment were well matched with burn induced time and wound healing process was consistent with previous wound healing report. Therefore, the multimodal OCT holds potential for burn study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.