HERMES (high energy rapid modular ensemble of satellites) is a space-borne mission based on a constellation of nano-satellites flying in a low-Earth orbit (LEO). The six 3U CubeSat buses host new miniaturized instruments hosting a hybrid silicon drift detector/GAGG:Ce scintillator photodetector system sensitive to x-rays and gamma-rays. HERMES will probe the temporal emission of bright high-energy transients such as gamma-ray bursts (GRBs), ensuring a fast transient localization (with arcmin-level accuracy) in a field of view of several steradians exploiting the triangulation technique. With a foreseen launch date in late 2023, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. Moreover, the HERMES constellation will operate in conjunction with the space industry responsive intelligent thermal (SpIRIT) 6U CubeSat, to be launched in early 2023. SpIRIT is an Australian-Italian mission for high-energy astrophysics that will carry in a sun-synchronous orbit (SSO) an actively cooled HERMES detector system payload. On behalf of the HERMES collaboration, in this paper we will illustrate the HERMES and SpIRIT payload design, integration and tests, highlighting the technical solutions adopted to allow a wide-energy-band and sensitive x-ray and gamma-ray detector to be accommodated in a 1U CubeSat volume.
The Pixelated silicon Drift Detector (PixDD) is a two-dimensional multi-pixel X-ray sensor based on the technology of Silicon Drift Detectors, designed to solve the dead time and pile-up issues of photon-integrating imaging detectors. Read out by a two-dimensional self-triggering Application-Specific Integrated Circuit named RIGEL, to which the sensor is bump-bonded, it operates in the 0:5 — 15 keV energy range and is designed to achieve single-photon sensitivity and good spectroscopic capabilities even at room temperature or with mild cooling (< 150 eV resolution at 6 keV at 0 °C). The paper reports on the design and performance tests of the 128-pixel prototype of the fully integrated system.
This paper assesses the response to radiation effects of the RIGEL, the Application Specific Integrated Circuit developed within the framework of the PixDD project, to be coupled with a multi-pixel sensor based on Silicon Drift Detectors for operation at the focal plane of X-ray optics on board space-borne astronomy missions. The campaign was conducted at the heavy ion beam line of the Radiation Effects Facility of the University of Jyvӓskylӓ (Finland): both the response to Single Event Effects (latch-ups and bit flips) and to Total Ionising Dose was evaluated. Experimental data were combined with simulations of the in-orbit environment for two scenarios: an equatorial and a Sun-synchronous orbit. The study demonstrated that the device can be safely operated on an equatorial orbit without any dedicated circuitry to mitigate Single Event Effects, although this precaution is instead advisable in the case of a Sun-synchronous orbit. Spectroscopic degradation resulting from Total Ionising Dose stays below 10% up to 34 krad, a manageable value for both orbital configurations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.