With increasing knowledge of the role of the different phases in the bulk heterojunction organic solar cell, the primary site for charge generation is now considered to be the mixed phase, and not the clean interface between neat polymer and neat fullerene. To gain a better understanding of the primary charge generating and recombination steps in this region of the system, we focus our studies on the role of the solid-state microstructure of neat polymers and light-doping of these polymers with a variety of electron-accepting dopants at low concentration.
This presentation will describe some recent work on the doping of polythiophene and polyfluorene derivatives with fullerenes, phthalocyanines and perylenes, which provide a range of reduction potentials that serve to control the driving force for electron transfer processes. Results from flash photolysis, time-resolved microwave conductivity (fp-TRMC), femtosecond transient absorption spectroscopy (fTA) and photoluminescence spectroscopy will be presented.
We examined photoinduced charge-generation dynamics of the poly(3-hexylthiophene) (P3HT)/titanyl phthalocyanine (TiOPc) bilayer and the P3HT/TiOPc/C60 trilayer using the combination of flash-photolysis time-resolved microwave conductivity experiments (fp-TRMC) and classic pump-probe transient absorption (TA) spectroscopy following dominant excitation of the P3HT layer. The superlinear increase of φΣμ for the P3HT/TiOPc bilayer, compared to the φΣμ sum of each P3HT and TiOPc layer suggest photoinduced carrier-generation. Furthermore, the superlinear increase of φΣμ of the P3HT/TiOPc/C60 trilayer with respect to the each P3HT/TiOPc and TiOPc/C60 bilayers evinces charge migration from one interface to the other interface. In addition, with selective photoexcitation on the P3HT layer, both amorphous and H-aggregated P3HT domains participate in electron transfer ([P3HT*/TiOPc]→[P3HT•+/TiOPc•-]), contrasting to the previous observation where with selective excitation of the TiOPc layer, only the H-aggregated P3HT domain involves in hole transfer ([P3HT/TiOPc→[P3HT•+/TiOPc•-]) to produce P3HT•+/TiOPc•- in J. Phys. Chem. B 119(24), 7729—7739 (2015). These results under different excitation conditions are consistent with calculated energetic driving force (ΔECS) for charge generation which is -0.58 eV and -0.73 eV for amorphous and H-aggregated P3HT domains under the P3HT layer excitation, while 0.04 eV and -0.11 eV for amorphous and H-aggregated P3HT domains under the TiOPc layer excitation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.