Organic-inorganic perovskite light-emitting devices have recently emerged as a reliable light source. Here, we developed a Single Layer Perovskite Light-Emitting Electrochemical Cells (SL-PeLEC) with laminated free-standing Carbon Nanotube Sheet (CNT) sheets as an effective charge electron injecting cathode electrode. The structure consists of bottom ITO-on-glass as a transparent electrode, the composite of CsPbBr3:PEO:LiPF6 with additive ionic salt as an emitting layer (EML) and 5 layers of CNT aerogel sheets as a top laminated cathode . Utilizing CNT free standing sheets laminated right on top of perovskite thin film in this simple single layer configuration has multiple benefits. Such CNT top cathode does not show any chemical degradation by reaction with halogens from perovskite, which is detrimental for metallic cathodes. Moreover, the formation of an internal p-i-n junction in perovskite EML composite layer by ionic migration under applied voltage bias and electric double layer (EDL) formation at each electrode interface is beneficially effecting CNT sheets by Li+ ionic doping and raises their Fermi level, further enhancing electron injection. Besides, inspired by successes of ionic additives in LECs and electrochemical doping of perovskite with alkali metals, we leveraged a lithium salt, LiPF6, within a CsPbBr3:PEO composite matrix to achieve optimal ionic redistribution and doping effects in this SL-PeLEC. Although initially CNT electrode has slightly high sheet resistance, the SL-PeLEC device has a low turn-on voltage of 2.6v and a maximum luminance intensity of 530 cd/m2, confirming the n-doping increased conductivity. This work provides a unique route toward flexible and bright perovskite LECs with stable and transparent CNT electrodes that can have injection efficiency tuned by poling induced ionic EDL-doping.
Unrepaired DNA damage can lead to mutation, cancer, and death of cells or organisms. However, due to the subtlety of DNA damage, it is difficult to sense the repair of damage products with high selectivity and sensitivity. Here, we show sensitive and selective electrochemical sensing of the repair activity of 8-oxoguanine and uracil glycosylases within DNA monolayers on gold by multiplexed analysis with silicon chips and low-cost electrospun nanofibers. Our approach involves comparing the electrochemical signal of redox probe modified monolayers containing the defect versus the rational control of defect-free monolayers. We find sequence-specific sensitivity thresholds on the order of femtomoles of proteins and dynamic ranges of over two orders of magnitude for each target. For 8-oxoguanine repair, temperature-dependent kinetics are extracted, showing exponential signal loss with time constants of seconds. Electrospun fibers are shown to behave similarly to conventional gold-on-silicon devices, showing the potential of these low-cost devices for sensing applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.