A next generation tomosynthesis (NGT) system has been proposed to obtain higher spatial resolution than traditional digital breast tomosynthesis (DBT) by achieving consistent sub-pixel resolution. Resolution and linear acquisition artifacts can be further improved by creating multi-axis, x-ray tube acquisition paths. This requires synchronization of the x-ray generator, x-ray detector, and motion controller for an x-ray tube motion path composed of arbitrarily spaced x-ray projection points. We have implemented a state machine run on an Arduino microcontroller that synchronizes the system processes through hardware interrupts. The desired x-ray projection points are converted into two-dimensional motion segments that are compiled to the motion controller’s memory. The state machine then signals the x-ray tube to move from one acquisition point to another, exposing x-rays at each point, until every acquisition is made. The effectiveness of this design was tested based on speed of procedure and image quality metrics. The results show that the average procedure time, over 15 test runs for three different paths, took under 20 seconds, which is far superior to previous acquisition methods on the NGT system. In conclusion, this study shows that a state machine implementation is viable for fast and accurate acquisitioning in NGT systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.