Active resonators based on optical waveguides can significantly enhance the performance of optical gyroscope due to its loss compensation effect. The spontaneous emission noise (SEN) stemmed from optical gain will broaden the linewidth of the resonator and limit the sensitivity and resolution of active resonator optical gyroscope (AROG). In this paper, we modified the sensitivity formula when the spontaneous emission noise is dominant and analyzed theoretically the performance limitations of the AROG. After considering the spontaneous emission noise source, the resolution can be improved through optimizing the design parameters of the AROG
In this paper, an active ring-coupled Mach-Zehnder interferometer (arcMZI) for rotation sensing is proposed. Theoretical resolution formula of this arcMZI gyroscope was deduced by using of transfer matrix method and noise analysis model. The simulation result shows that the theoretical maximum sensitivity of arcMZI gyroscope can be enhanced at least two orders of magnitude compared with the single-bus resonator (SBR) gyroscope for the same footprint and effective loss after equivalent optimization. The arcMZI gyroscope could be of great potential to meet the tactical demands of future inertial navigation.
Optical waveguide is used in most integrated optic devices to confine and guide light in higher refractive index channels. The structures and materials of slot waveguides are reviewed in this paper. Coupled resonator optical waveguides (CROWs) can be used for a rotation sensor with compact size, low power consumption and low cost. The loss determines the ultimate sensitivity of CROW gyros. Resonator-based optical gyroscope’s sensitivity for measuring rotation is enhanced via using the anomalous dispersion characteristic of superluminal light propagation, which can be also generated by using passive optical resonators.
KEYWORDS: Gyroscopes, Resonators, Waveguides, Active optics, Signal to noise ratio, Wave propagation, Glasses, Phase shifts, 3D modeling, Refractive index
Active coupled resonator optical waveguide (CROW) structure can significantly enhance the performance of optical gyroscope due to its loss compensation effect and highly dispersive properties. In this paper, we analyze the effect of optical gain and its induced noise, i.e. spontaneous emission noise, on the properties of the active CROWs. A thorough investigation of the impact of various disorder degrees on the performance of the active three dimensional vertically coupled resonators (3D-VCR) gyroscope has been performed. It shows how the disorder interacted with coupling coefficient affects the achievable resolution ΔΩmin of gyroscope, and the degree of disorder will supplant the propagation loss to become an ultimate limitation. Finally, it is shown that the active 3D-VCR gyroscope (the number of ring, N>6) has better resolution ΔΩmin than that of the equivalent resonant waveguide optical gyroscope (RWOG).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.