Monitoring the hazardous and noxious substances (HNS) is a very important issue for mitigating the influence of catastrophic accidents in ocean and coastal areas. However, research on the HNS sensor is just in the beginning stage. In this study, we proposed a new HNS sensor using a printed ITO layer. We carried out a series of experiments of detecting the NH4OH and seawater solution to investigate the feasibility as a HNS sensor. The resistance of ITO layer dropped abruptly when it soaked into the solutions. The resistance change (δR) was linearly correlated with the NH4OH concentration of the solution, also it can be classified into two states; one is the transition stage, the other is the stabilized stage. The former is considered to be caused by the large capacitance of the electrical double layer (EDL) on the ITO surface. Also, the ITO layer showed considerable chemical stability within our experimental condition. In this paper, we have investigated the feasibility of printed ITO layer as a sensitive and cheap HNS sensor.
Large-sized and high-quality free standing GaN are required with the development of GaN-based devices. We have
developed new techniques to reduce the price of GaN substrates. In this paper, we introduce a simple fabrication way of
freestanding GaN substrate using hydride vapor phase epitaxy (HVPE). An evaporable buffer layer was applied for the
fabrication of 2inch freestanding GaN to separate from a sapphire substrate, in other words, a freestanding GaN was
fabricated only by HVPE (one-stop process) without any process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.