Surface defect detection is the key to assessing the quality of optical surfaces. Traditional geometric optics cannot adequately explain the distribution of defects on surfaces. Herein, a method is proposed to comprehensively investigate the scattering characteristics of surface defects in precision optical components. First, electromagnetic theoretical models of surface defects with cross-sections of triangles, ellipses, and rectangles were established using the finite element method. Through simulation, the precise distribution of scattered light at the micro-nano-scale defects in the transmissive-reflective direction was obtained. Subsequently, a sophisticated dark-field microscopic testing system was designed and constructed to capture high-resolution scattered light images of standard defect samples. To effectively measure the depth of surface defects, a highly sensitive photomultiplier tube was used to measure the scattered light intensity. The measured intensity was subsequently compared with the theoretical simulation results to obtain a reference value for the defect depth. The reference values for the depth of surface defects obtained from the simulation are largely consistent with experimental results. It provides a theoretical foundation and reference for the multidimensional measurement of surface defects in optical components.
Laser measurement system has the advantages of fast speed, high precision, and cost-effective. But the laser itself coherently produces speckles, the presence of laser speckle can seriously degrade image quality, leading to decrease in image recognition accuracy, thus reducing the accuracy of measurement. In this paper, we propose a multi-beam superposition method to reduce laser speckle. We use four lasers with equal optical power as the incident light source, then build the entire system light path by beam shaping and polarized beams superimposing, which achieves the line structured light required for the laser measurement system. According to the theoretical analysis and simulation optimization, the speckle contrast was reduced to 50% of the original value in this way. After beam shaping, we can obtain the linear laser beam with a line width of less than 1mm, a field of view angle of 66.8°, a light energy loss of less than 10% and an energy uniformity of 97.25% at a projection distance of 1000mm.The above results highlight a viable approach to decrease speckle contrast and measurement errors. This system can achieve high power and low speckle contrast light sources in the field of measurement, with outstanding result in practicability and convenience. On the other hand, this system can effectively solve the problems of serious error and low efficiency in measurement.
The need for imaging and detecting in various instrument areas has brought light detection and ranging (LiDAR) to the forefront of consumer technology. Among different LiDAR, microelectromechanical system (MEMS) LiDAR has more appeal due to its small size and high integration. However, due to its low resolution and slight scanning angle, MEMS LiDAR does not apply to all scenes. Thus we presented a 360-deg scanning LiDAR emission optical system. Design formulas were deduced from theoretical formulas. In this system, the aspheric lens collimated the beam, MEMS micromirrors tracked the concentric circular beams, and the converging lens compensated for the divergence of the outgoing beam. By doing so, the target was scanned 360 deg at high resolution. With Zemax, the fast-axis divergence angle was 0.2484 mrad, the slow-axis divergence angle was 0.1546 mrad, and the system energy utilization rate was 84.16% with an angular resolution of 0.0142 deg at a distance of 10,000 mm. We have provided a potential solution for improving the scanning angle and resolution of MEMS LiDAR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.