Two recent projects at Spectral Sciences Inc. have a goal of benefiting the calibration of overhead optical sensors. In the first, we have developed a vicarious calibration method that utilizes our MODTRAN software, the recognized standard for radiative transport. In the second, we are developing a new array of thermally controlled, square, spectrally characterized panels to support accurate calibration of imagers in the visible through long wavelength infrared (LWIR). Progress and results of both efforts will be described.
We describe a new algorithm, QUAC-IR (QUick Atmospheric Correction in the InfraRed), for automated, fast, atmospheric correction of LWIR (Long Wavelength InfraRed) hyperspectral imagery (HSI) and multi-spectral imagery (MSI) in the ~7-14 mm spectral region. QUAC-IR is an in-scene based algorithm, similar to the widely used ISAC (In- Scene Atmospheric Correction) algorithm. It improves upon the ISAC approach in several key ways, including providing absolute, versus relative, sensor-to-ground transmittances and radiances, as well as an estimate of the atmospheric downwelling sky radiance. The latter is important for retrieving emissivity from a reflective (i.e., non-blackbody) pixel. The key aspect of QUAC-IR is that it explicitly searches for blackbody pixels using an efficient approach involving a small number of spectral channels in which the atmospheric radiative transfer is dominated by the water continuum. This allows for fast and simplified Beer's Law (i.e., exponential) scaling of the path transmittance and radiance based on a compact library of pre-computed reference values. We apply QUAC-IR to well-calibrated data from the SEABASS1 and MAKO2 HSI sensors. The results are compared to those from a first-principles physics-based atmospheric code, FLAASH-IR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.