Accurate assessment of wound oxygenation and perfusion is important for evaluating wound healing/regression and
guiding following therapeutic processes. However, many existing techniques and clinical practices are subjective and
qualitative due to background bias, tissue heterogeneity, and inter-patient variation. To overcome these limitations, we
developed a dual-modal imaging system for in vivo, non-invasive, real-time quantitative assessment of wound tissue
oxygenation and perfusion. The imaging system integrated a broadband light source, a high-resolution CCD camera, a
highly sensitive thermal camera, and a liquid crystal tunable filter. A user-friendly interface was developed to control all
the components systematically. Advanced algorithms were explored for reliable reconstruction of tissue oxygenation and appropriate co-registration between thermal images and multispectral images. Dual-mode oxygenation and perfusion imaging was demonstrated on both benchtop models and human subjects, and compared with measurements using other methods, such as Laser Doppler and tissue oximeter. The test results suggested that the dual-modal imaging system has the potential for non-contact real-time imaging of wound tissue oxygenation and perfusion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.