Temperature effect is one of the most significant and negative effects on bridges, even worse for long-span bridges. In this study, numerical method for temperature-induced structural strains analysis based on a long-span suspension bridge is investigated. The finite element (FE) models for transient thermal analysis and structural analysis of the long-span suspension bridge are developed, respectively. The variations and distributions of structural temperatures are calculated by applying the thermal boundary conditions on the thermal FE models. Then, structural temperatures are loaded on the structural FE models for structural analysis to obtain the structural strains. The temperature-induced strains of box girder, main cables and towers of the suspension bridge are calculated and analyzed. The results indicated that the temperature effects on the main components of suspension bridge are significant. The structural temperature variations exactly explicate the changes of environmental conditions. The strains of temperature effects not only caused by temperatures of itself, but also the impact of other components. This numerical method can conveniently and effectively calculate the structural temperatures and temperature-induced strains of suspension bridge.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.