Ions are fundamental biological regulators enabling the communication between cells, regulating metabolic and bioenergetic processing and playing a key role in pH regulation and hydration. The in-situ quantification of the ion concentration is gathering relevant interest in biomedical diagnostics and healthcare. State-of-art transistor-based ion sensors show an intrinsic trade-off between sensitivity, operating range and supply voltage. To overcome these limitations, here we focus on ion sensor amplifiers where complementary OECTs are integrated in a push-pull configuration, providing sensitivity larger than 1 V/dec at a supply voltage down to 0.5 V and operating in the physiological range. Ion detection over a range of five orders of magnitude and real-time monitoring of variations two orders of magnitude lower than the detected concentration are achieved. The ion-sensitive amplifier sets a new benchmark for ion-sensing devices, opening possibilities for predictive diagnostics and personalized medicine.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.